INFOBENCH: Evaluating Instruction Following Ability in Large Language Models

828 篇文章 3 订阅

已下架不支持订阅

本文提出分解需求遵循率(DRFR)指标,用于深入评估大型语言模型(LLM)的指令执行能力。INFOBENCH基准包含500条指令和2250个问题,用于测试LLM在多种约束条件下的表现。实验显示DRFR比传统方法更可靠,GPT-4在注释方面展现出高效能。研究揭示了LLM在处理复杂指令时的挑战,为未来LLM的改进和评估提供了新的视角。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《INFOBENCH: Evaluating Instruction Following Ability in Large Language Models》的翻译。

INFOBENCH:在大型语言模型中评估遵循指令能力

摘要

本文介绍了分解需求遵循率(DRFR),这是一种评估大型语言模型(LLM)遵循指令能力的新指标。为了解决当前方法中的差距,DRFR将复杂的指令分解为更简单的标准,有助于对LLM遵守任务各个方面的情况进行详细分析。除了这个指标之外,我们还介绍了INFOBENCH,这是一个基准测试,包括500条不同的指令和2250个跨多个约束类别的分解问题。我们的实验将DRFR与传统的评分方法进行了比较,并探索了注释来源,包括人类专家、众包工作者和GPT-4。研究结果证明了DRFR更高的可靠性和使用GPT-4作为成本效益注释器的有效性。使用该框架对几种高级LLM进行的评估揭示了它们的优势和需要改进的领域,特别是在以下复杂的说明中。这项研究提供了一个新的指标和基准,为未来LLM的开发和评估提供了见解。

1 引言

2 INFOBENCH

3 实验

4 自动评估

5 相关工作

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值