本文是LLM系列文章,针对《Large Language Model Evaluation via Matrix Entropy》的翻译。
摘要
大型语言模型(LLM)已经彻底改变了自然语言处理领域,将其强大的功能扩展到多模态领域。因此,为LLM的评估定义适当和多样化的指标至关重要。
在本文中,我们引入了矩阵熵,这是一种植根于信息论和几何原理的新度量,用于量化LLM中的数据压缩能力。它反映了模型提取相关信息和消除不必要元素的能力,从而深入了解语言模型的内在能力。具体来说,我们展示了它在单模态(语言)和多模态设置中的适用性。对于语言模型,我们的研究结果表明,当模型向上扩展时,表示的矩阵熵遵循比例律类型的约简,这是对传统损失比例律的补充。对于多模态环境,我们还提出了一种基于矩阵熵的评估方法来评估对准质量,我们发现现代大型多模态模型表现出良好的对准性能。我们的代码在https://github.com/waltonfuture/Matrix-Entropy可用。