Large Language Model Evaluation via Matrix Entropy

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)的评估,引入矩阵熵作为度量模型数据压缩能力和信息提取效率的新方法。研究显示矩阵熵在模型规模增大时遵循比例律,为理解模型性能提供新视角。同时,矩阵熵也被用于评估多模态LLM的对准质量,揭示了现代模型的良好对齐性。未来研究将继续扩展此方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Model Evaluation via Matrix Entropy》的翻译。

摘要

大型语言模型(LLM)已经彻底改变了自然语言处理领域,将其强大的功能扩展到多模态领域。因此,为LLM的评估定义适当和多样化的指标至关重要。
在本文中,我们引入了矩阵熵,这是一种植根于信息论和几何原理的新度量,用于量化LLM中的数据压缩能力。它反映了模型提取相关信息和消除不必要元素的能力,从而深入了解语言模型的内在能力。具体来说,我们展示了它在单模态(语言)和多模态设置中的适用性。对于语言模型,我们的研究结果表明,当模型向上扩展时,表示的矩阵熵遵循比例律类型的约简,这是对传统损失比例律的补充。对于多模态环境,我们还提出了一种基于矩阵熵的评估方法来评估对准质量,我们发现现代大型多模态模型表现出良好的对准性能。我们的代码在https://github.com/waltonfuture/Matrix-Entropy可用。

1 引言

2 相关工作

3 前言

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值