本文是LLM系列文章,针对《Pre-trained Large Language Models for Financial Sentiment Analysis》的翻译。
摘要
金融情绪分析是指将金融文本内容分为情绪类别(如积极、消极和中性)。在本文中,我们重点研究财经新闻标题的分类,由于缺乏大量的训练样本,这是一项具有挑战性的任务。为了克服这一困难,我们建议微调预训练的大型语言模型(LLM)来解决这个问题。LLM是从大量的文本语料库中训练出来的,在文本理解方面具有优势,并且可以有效地适应特定领域的任务,同时只需要很少的训练样本。特别是,我们将开源的Llama2-7B模型(2023)与监督微调(SFT)技术相结合。实验评估表明,即使使用7B模型(LLM相对较小),我们的方法也显著优于以前最先进的算法。数据和代码在https://github.com/luosting/LLaMA-Financialsentiment-analysis可用。