Pre-trained Large Language Models for Financial Sentiment Analysis

828 篇文章 3 订阅

已下架不支持订阅

本文研究预训练的大型语言模型(LLM)在金融情绪分析中的应用,尤其是财经新闻标题的分类。通过使用开源的Llama2-7B模型结合监督微调(SFT),即使在少量训练样本的情况下,也能显著优于先前的算法,实现新的最优性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Pre-trained Large Language Models for Financial Sentiment Analysis》的翻译。

用于金融情绪分析的预训练大型语言模型

摘要

金融情绪分析是指将金融文本内容分为情绪类别(如积极、消极和中性)。在本文中,我们重点研究财经新闻标题的分类,由于缺乏大量的训练样本,这是一项具有挑战性的任务。为了克服这一困难,我们建议微调预训练的大型语言模型(LLM)来解决这个问题。LLM是从大量的文本语料库中训练出来的,在文本理解方面具有优势,并且可以有效地适应特定领域的任务,同时只需要很少的训练样本。特别是,我们将开源的Llama2-7B模型(2023)与监督微调(SFT)技术相结合。实验评估表明,即使使用7B模型(LLM相对较小),我们的方法也显著优于以前最先进的算法。数据和代码在https://github.com/luosting/LLaMA-Financialsentiment-analysis可用。

1 引言

2 相关工作

3 方法<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值