文章主要内容总结 本文聚焦于提升大语言模型(LLMs)在对话中处理引用文本的能力,提出了一种名为QuAda的即插即用模块,旨在解决现有模型缺乏显式定位和利用引用片段的问题。核心内容包括: 问题建模:将引用对话形式化为跨段条件生成(span-conditioned generation),将对话分解为历史记录 H H H、引用片段集合