KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS

828 篇文章 3 订阅

已下架不支持订阅

本文探讨了大型语言模型(LLM)的知识融合,旨在将不同架构的LLM结合成单一模型,增强其性能。通过利用源LLM的生成分布,将知识外部化,方法FUSELLM在推理、常识和代码生成等任务中提高了目标模型的表现。研究结果证实了LLM融合的有效性,并提供了公开资源供进一步研究。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS》的翻译。

摘要

虽然从头开始训练大型语言模型(LLM)可以生成具有不同功能和优势的模型,但这会带来巨大的成本,并可能导致冗余功能。或者,一种具有成本效益和说服力的方法是将现有的预训练的LLM合并到一个更有效的模型中。然而,由于这些LLM的架构各不相同,直接混合它们的权重是不切实际的。在本文中,我们引入了LLM的知识融合概念,旨在将现有LLM的能力结合起来,并将其转移到单个LLM中。通过利用源LLM的生成分布,我们将其集体知识和独特优势外部化,从而有可能将目标模型的能力提升到任何单个源LLM之外。我们使用三种不同架构的流行LLM——Llama-2、MPT和OpenLLaMA——在各种基准测试和任务中验证了我们的方法。我们的研究结果证实,LLM的融合可以在推理、常识和代码生成等一系列功能上提高目标模型的性能。我们的代码、模型权重和数据公开于https://github.com/fanqiwan/FuseLLM.

1 引言

2 相关工作

3 LLMs的知识融合

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值