本文是LLM系列文章,针对《KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS》的翻译。
摘要
虽然从头开始训练大型语言模型(LLM)可以生成具有不同功能和优势的模型,但这会带来巨大的成本,并可能导致冗余功能。或者,一种具有成本效益和说服力的方法是将现有的预训练的LLM合并到一个更有效的模型中。然而,由于这些LLM的架构各不相同,直接混合它们的权重是不切实际的。在本文中,我们引入了LLM的知识融合概念,旨在将现有LLM的能力结合起来,并将其转移到单个LLM中。通过利用源LLM的生成分布,我们将其集体知识和独特优势外部化,从而有可能将目标模型的能力提升到任何单个源LLM之外。我们使用三种不同架构的流行LLM——Llama-2、MPT和OpenLLaMA——在各种基准测试和任务中验证了我们的方法。我们的研究结果证实,LLM的融合可以在推理、常识和代码生成等一系列功能上提高目标模型的性能。我们的代码、模型权重和数据公开于https://github.com/fanqiwan/FuseLLM.