Premise Order Matters in Reasoning with Large Language Models

828 篇文章

已下架不支持订阅

研究表明,大型语言模型(LLM)在推理任务中对前提顺序敏感,正确的顺序能提升模型性能,反之则可能导致准确率下降30%以上。在演绎推理和数学问题解决的基准测试中,这种排序效应尤为明显。未来工作将探索如何减轻这种影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Premise Order Matters in Reasoning with Large Language Models》的翻译。

大型语言模型推理中的前提顺序问题

摘要

大型语言模型(LLM)在各个领域都取得了显著的推理性能。然而,在推理任务领域,我们发现了一个弱点:LLM对前提的排序出奇地脆弱,尽管这种排序不会改变基本任务。特别是,我们观察到,当前提顺序与中间推理步骤中所需的上下文一致时,LLM实现了最佳性能。例如,在演绎推理任务中,以与提示中的基本事实证明相同的顺序呈现前提(与随机排序相反)大大提高了模型的准确性。我们首先考察了前提顺序对各种LLM的演绎推理的影响,我们的评估表明,排列前提顺序会导致性能下降30%以上。此外,我们发布了基于GSM8K的基准R-GSM,以检查数学问题解决的排序效应,并且我们再次观察到相对于原始GSM8K基准,精度显著下降。

1 引言

2 基准

3 实验

4 相关工作

5 结论

在这项工作中,我们发现前提顺序会显著影响LLM在推理任务中的性能,即使前提顺

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值