EXPLORING THE ADVERSARIAL CAPABILITIES OF LARGE LANGUAGE MODELS

828 篇文章

已下架不支持订阅

本文研究大型语言模型(LLM)生成对抗性示例的能力,发现LLM能制作对抗性文本,干扰安全措施,如仇恨言论检测。这种自适应探索方法揭示了LLM与安全系统的潜在冲突,提出了未来研究的新方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《EXPLORING THE ADVERSARIAL CAPABILITIES OF LARGE LANGUAGE MODELS》的翻译。

摘要

大型语言模型(LLM)的激增因其强大的语言生成能力而引发了广泛和普遍的兴趣,为工业和研究提供了巨大的潜力。虽然之前的研究深入研究了LLM的安全和隐私问题,但这些模型在多大程度上表现出对抗性行为仍有待探索。为了解决这一差距,我们调查了常见的公开LLM是否具有干扰文本样本以欺骗安全措施的固有能力,即所谓的对抗性示例攻击。更具体地说,我们研究LLM是否天生能够从良性样本中制作对抗性示例,以欺骗现有的安全轨道。我们专注于仇恨言论检测的实验表明,LLM成功地发现了对抗性扰动,有效地破坏了仇恨言论检测系统。我们的发现对依赖LLM的(半)自主系统具有重要意义,突出了它们与现有系统和安全措施相互作用的潜在挑战。

1 引言

2 用大型语言模型制作对抗性示例

3 影响、未来工作和限制

4 结论

在这项研究中,我们展示了公开的LLM制作对抗性文本示例的固有能力。通过与目标模型的迭代交互,所有研究的LLM都发现了各种成功的扰动策略,有效地欺骗了模型。与依赖预定义

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值