本文是LLM系列文章,针对《EXPLORING THE ADVERSARIAL CAPABILITIES OF LARGE LANGUAGE MODELS》的翻译。
探索大型语言模型的对抗能力
摘要
大型语言模型(LLM)的激增因其强大的语言生成能力而引发了广泛和普遍的兴趣,为工业和研究提供了巨大的潜力。虽然之前的研究深入研究了LLM的安全和隐私问题,但这些模型在多大程度上表现出对抗性行为仍有待探索。为了解决这一差距,我们调查了常见的公开LLM是否具有干扰文本样本以欺骗安全措施的固有能力,即所谓的对抗性示例攻击。更具体地说,我们研究LLM是否天生能够从良性样本中制作对抗性示例,以欺骗现有的安全轨道。我们专注于仇恨言论检测的实验表明,LLM成功地发现了对抗性扰动,有效地破坏了仇恨言论检测系统。我们的发现对依赖LLM的(半)自主系统具有重要意义,突出了它们与现有系统和安全措施相互作用的潜在挑战。
1 引言
2 用大型语言模型制作对抗性示例
3 影响、未来工作和限制
4 结论
在这项研究中,我们展示了公开的LLM制作对抗性文本示例的固有能力。通过与目标模型的迭代交互,所有研究的LLM都发现了各种成功的扰动策略,有效地欺骗了模型。与依赖预定义