Investigating Multi-Hop Factual Shortcuts in Knowledge Editing of Large Language Models

828 篇文章

已下架不支持订阅

本文研究了大型语言模型(LLM)在多跳知识推理中利用直接连接作为事实捷径的现象。发现捷径强度与预训练数据中实体共现频率相关,并约20%的失败案例与捷径有关。提出了擦除捷径神经元的方法以降低风险。呼吁关注LLM在多跳推理中的真实能力和预训练中捷径生成的约束。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Investigating Multi-Hop Factual Shortcuts in Knowledge Editing of
Large Language Models》的翻译。

摘要

最近的工作展示了大型语言模型在回忆知识和推理方面的强大能力。然而,LLM通过多跳事实将这两种能力结合到推理中的可靠性尚未得到广泛探索。本文系统地研究了LLM利用基于多跳知识的初始实体和终端实体之间的直接连接的快捷方式的可能性。我们首先通过知识神经元来探索事实捷径的存在,揭示:(i)事实捷径的强度与预训练语料库中初始和最终实体的共现频率高度相关;(ii)与思维链提示相比,小样本提示在回答多跳问题时利用了更多的捷径。然后,我们从多跳知识编辑的角度分析了事实捷径带来的风险。分析表明,大约20%的失败归因于捷径,并且这些失败实例中的初始和终端实体在预训练语料库中通常具有更高的共现性。最后,我们提出擦除快捷方式神经元以减轻相关风险,并发现这种方法显著减少了捷径导致的多跳知识编辑失败。代码公开于https://github.com/Jometeorie/ProbingShortcuts.

1 引言

2 重新思考多跳知识</

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值