CAMELOT: Towards Large Language Models with Training-Free Consolidated Associative Memory

828 篇文章

已下架不支持订阅

CAMELOT是一种整合的联想记忆模块,可与预训练的大型语言模型结合,无需重新训练就能处理长输入序列。通过动态管理传入信息的新颖性和近期性,CAMELOT显著降低了长上下文建模的困惑,提高了性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《CAMELOT: Towards Large Language Models with Training-Free Consolidated Associative Memory》的翻译。

CAMELOT:面向具有训练自由整合联想记忆的大型语言模型

摘要

由于高内存和运行时成本,大型语言模型(LLM)难以处理长输入序列。内存增强模型已成为解决这一问题的一个很有前途的解决方案,但当前的方法受到内存容量有限的阻碍,需要昂贵的重新训练才能与新的LLM集成。在这项工作中,我们介绍了一种联想记忆模块,它可以在不重新训练的情况下耦合到任何预训练(冻结)的基于注意力的LLM,使其能够处理任意长的输入序列。与以前的方法不同,我们的关联内存模块将单个token的表示合并到一个非参数分布模型中,通过适当平衡传入数据的新颖性和近期性来动态管理。通过从这个整合的联想记忆中检索信息,与在标准基准上评估的其他基线相比,基本LLM可以显著减少长上下文建模中的困惑(在Arxiv上高达29.7%)。这种架构,我们称之为CAMELoT(Consolidated Associationve Memory Enhanced Long Transformer),即使在128个token的微小上下文窗口中也表现出了卓越的性能,并且还通过一组更大的演示实现了改进的上下文内学习。

1 引言</

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值