Unilogit: Robust Machine Unlearning for LLMs Using Uniform-Target Self-Distillation

在这里插入图片描述

一、文章主要内容总结

本文聚焦于大语言模型(LLMs)的机器遗忘(Machine Unlearning)领域,提出了一种名为Unilogit的自蒸馏方法,旨在解决模型在选择性遗忘敏感信息的同时保持整体性能的挑战,以满足数据隐私法规(如GDPR)的要求。

1. 核心方法
  • 动态均匀目标自蒸馏:通过调整目标对数几率(logits),使目标标记的概率在软最大化(softmax)后变为均匀分布(uniform probability),并利用当前模型的输出生成更准确的软标签(soft labels)。
  • 反向KL散度损失:采用反向KL散度(Reverse KL divergence)作为遗忘损失函数,抑制模型对遗忘信息的高置信度预测,同时通过保留损失(retain loss)维持模型在保留数据上的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值