ToolRL: Reward is All Tool Learning Needs

在这里插入图片描述

主要内容

  1. 研究背景:大语言模型(LLMs)在复杂推理任务中表现出色,工具集成推理(TIR)通过让LLMs与外部工具交互,能解决其知识过时、计算不准确等问题。目前训练LLMs进行TIR任务主要依赖监督微调(SFT),但SFT在泛化、探索和适应性方面存在不足。强化学习(RL)为解决这些问题提供了新方向,而设计有效的奖励机制是RL训练的关键。
  2. 方法:定义TIR任务,通过系统提示和特定格式让模型自主生成推理轨迹和工具调用。设计结合结构和正确性的奖励机制,将总体奖励分解为格式奖励和正确性奖励,其中正确性奖励又细分为工具名称匹配、参数名称匹配和参数内容匹配。使用分组相对策略优化(GRPO)算法对模型进行训练,通过组内样本的优势归一化稳定训练。
  3. 实验:构建包含多种工具使用场景的混合数据集,在多个基准测试上评估模型,包括伯克利函数调用排行榜(BFCL)、API-Bank和Bamboogle。对比多个基线模型,结果表明基于GR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值