Large Language Models for Data Annotation: A Survey

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)如何改变数据标注,减轻传统标注的高昂成本和复杂性。文章重点介绍了LLM在数据标注、评估其生成的标注以及在学习中使用这些标注的应用,同时分析了相关挑战、局限性和未来发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models for Data Annotation: A Survey》的翻译。

摘要

数据注释是用相关信息对原始数据进行标记或标签,对提高机器学习模型的功效至关重要。然而,这一过程既费力又昂贵。以GPT-4为例的高级大型语言模型(LLM)的出现,为彻底改变和自动化复杂的数据注释过程提供了前所未有的机会。虽然现有的调查广泛涵盖了LLM体系结构、训练和一般应用程序,但本文独特地关注了它们在数据注释中的特定用途。这项调查有助于三个核心方面:基于LLM的数据注释、评估LLM生成的注释和使用LLM生成注释进行学习。此外,本文还对使用LLM进行数据注释的方法进行了深入的分类,全面回顾了使用LLM生成的注释的模型的学习策略,并详细讨论了使用LLMs进行数据注释所面临的主要挑战和局限性。作为一项关键指南,这项调查旨在指导研究人员和从业者探索最新LLM在数据注释方面的潜力,促进这一关键领域的未来发展。我们在提供全面的论文列表https://github.com/Zhen-Tan-dmml/LLM4Annotation.git.

1 引言

2 符号和前言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值