OMGEVAL:An Open Multilingual Generative Evaluation Benchmark for Large Language Models

828 篇文章

已下架不支持订阅

OMGEval是首个开源的多语言生成评估基准,专注于测试大型语言模型在不同语言中的表现,包括知识、逻辑推理等方面。目前涵盖5种语言,通过GPT-4进行自动评分,旨在促进LLM的多语言能力研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《OMGEVAL:An Open Multilingual Generative Evaluation Benchmark for Large Language Models》的翻译。

OMGEVAL:一个开放的大型语言模型多语言生成评估基准

摘要

现代大型语言模型(LLM)通常应使来自世界各地不同文化背景的个人受益。然而,最新的LLM高级生成性评估基准主要集中在英语上。为此,我们介绍了OMGEval,这是第一个开源多语言生成测试集,可以评估LLM在不同语言中的能力。对于每种语言,OMGEval提供了804个开放式问题,涵盖了LLM的广泛重要功能,如一般知识、逻辑推理等。每个问题都经过人工注释器的严格验证。值得注意的是,为了充分反映LLM在不同文化背景下的兼容性,我们对每种非英语语言进行了本地化。具体而言,OMGEval的当前版本包括5种语言(即Zh、Ru、Fr、Es、Ar)。继AlpacaEval之后,我们使用GPT-4作为评判器来自动对不同的模型输出进行评分,这与人类评估密切相关。我们在建议的OMGEval上评估了几个具有代表性的多语言LLM,我们相信这将为社区进一步了解和提高LLM的多语言能力提供宝贵的参考。OMGEval可在https://github.com/blcuicall/OMGEval访问.

### 大型语言模型作为生成式多语言语音和机器翻译系统的概述 大型语言模型(LLMs)由于其强大的参数规模和预训练机制,能够处理多种自然语言任务。这些模型不仅限于单一语言环境,还展示了出色的跨语言迁移能力[^1]。 #### 跨语言表示学习中的挑战与解决方案 尽管ML LMs表现出显著的零样本跨语言迁移性能,但在实际应用中仍面临一些障碍。研究指出,在多语言嵌入空间里存在着强烈的语言身份特征,这会干扰语义信息的有效传递。为此,Xie等人提出了通过识别并消除低秩子空间来改善这一状况的方法。这种方法可以有效减少语法和其他非语义因素的影响,从而提高跨语言任务的表现[^2]。 #### 应用于生成式多语言语音合成 当涉及到生成式的多语言语音合成功能时,LLM可以通过理解不同语言之间的细微差别以及它们各自的发音规则来进行高质量的声音再现。借助先进的声码器技术,如WaveNet或Tacotron系列架构,结合精心设计的文字转音素映射算法,使得即使是对不常见字符也能实现逼真的发声效果。此外,利用上述提到的技术去除不必要的语言特性可以帮助创建更加通用且适应性强的TTS(Text-to-Speech)系统。 ```python import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53") def transcribe_speech(audio_input): inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0] return transcription ``` #### 实现高效的机器翻译服务 对于构建高效可靠的MT(Machine Translation)平台而言,LLM同样扮演着重要角色。通过对大量平行文本数据集的学习,加上适当的微调过程,可以使模型更好地捕捉源目标语言间的转换规律。特别是采用去除了特定语言属性后的向量表征方式后,进一步增强了对未知领域话题的理解力和服务质量稳定性。 ```python from transformers import MarianTokenizer, MarianMTModel tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') model = MarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-zh') def translate_text(input_text): batch = tokenizer([input_text], return_tensors='pt', truncation=True, max_length=512) generated_ids = model.generate(**batch) translated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return translated_texts[0] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值