Unveiling Linguistic Regions in Large Language Models

研究揭示大型语言模型(LLM)内存在一个约占总参数1%的核心区域,与语言能力高度相关。该区域的破坏会显著降低LLM在多种语言上的性能,并表现出维度依赖性。此外,特定的单语族区域影响LLM对应语言的熟练度。冻结核心语言区域可减少预训练中的灾难性遗忘问题。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Unveiling Linguistic Regions in Large Language Models》的翻译。

揭示大型语言模型中的语言区域

摘要

大型语言模型(LLM)已经显示出相当大的跨语言对齐和泛化能力。目前的研究主要集中在提高LLM的跨语言泛化能力上。然而,关于LLM如何实现跨语言对齐的内在机制仍然缺乏研究。本文从区域划分的角度,对LLMs的语言能力进行了几次考察。我们发现LLM中有一个核心区域对应于语言能力,约占整个模型参数的1%。通过将参数设置为零来删除此核心区域会导致30种不同语言的性能显著下降。此外,这个核心区域表现出显著的维度依赖性,甚至对特定维度上的单个参数的扰动都会导致语言能力的丧失。此外,我们发现不同的单语族存在不同的区域,对这些特定区域的破坏大大降低了LLM对相应语言的熟练程度。我们的研究还表明,在进一步的预训练中冻结核心语言区域可以缓解灾难性遗忘(CF)的问题,这是LLM进一步预训练中常见的现象。总的来说,探索LLM的功能区域可以深入了解其智力的基础。

1 引言

2 背景和度量

3 实验

4 相关工作

5 结论

本文探讨了某些参数在大型语言模型(LLM)中的关键作用,确定了多语言对齐和泛化所必需的核心区域。去除这个区域会导致LLM语言能力的完全丧失。此外,我们发现这个核心区域集中在特定的维度上,只扰动一个维度会导致语言能力的显著下降。此外,在核心语言区域之外,我们观察到LLM中存在影响特定语言的单语区域。重要的是,我们注意到&#

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值