本文是LLM系列文章,针对《A Survey of Text Watermarking in the Era of Large Language Models》的翻译。
摘要
近年来,大型语言模型(LLM)的文本生成能力取得了重大进展,在抽象摘要、对话生成和数据到文本转换等下游任务中表现出了卓越的性能。然而,它们的生成能力也带来了风险,如假新闻的快速传播、数据集/LLM版权的侵犯以及对学术诚信的挑战。文本水印技术是一种潜在的解决方案。通过在生成的文本中嵌入不可见但可检测的模式,它有助于跟踪和验证文本来源,从而防止滥用和盗版。
本调查旨在全面总结当前的文本水印技术,主要包括三个方面:(1)不同文本水印技术的概述和比较;(2) 文本水印算法的评估方法,包括其成功率、对文本质量的影响、鲁棒性和不可伪造性;(3) 文本水印技术的潜在应用。本次调查旨在帮助研究人员深入了解文本水印技术,从而促进其进一步发展。