A Survey of Text Watermarking in the Era of Large Language Models

828 篇文章

已下架不支持订阅

本文深入探讨了大型语言模型(LLM)时代文本水印技术,包括其在版权保护、学术诚信和假新闻检测中的应用。文本水印通过在生成的文本中嵌入隐形模式来追踪和验证来源,以抵御滥用和盗版。虽然面临鲁棒性、有效载荷和文本质量影响的挑战,但其未来发展对于确保AI生成内容的可信度至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Survey of Text Watermarking in the Era of Large Language Models》的翻译。

摘要

近年来,大型语言模型(LLM)的文本生成能力取得了重大进展,在抽象摘要、对话生成和数据到文本转换等下游任务中表现出了卓越的性能。然而,它们的生成能力也带来了风险,如假新闻的快速传播、数据集/LLM版权的侵犯以及对学术诚信的挑战。文本水印技术是一种潜在的解决方案。通过在生成的文本中嵌入不可见但可检测的模式,它有助于跟踪和验证文本来源,从而防止滥用和盗版。
本调查旨在全面总结当前的文本水印技术,主要包括三个方面:(1)不同文本水印技术的概述和比较;(2) 文本水印算法的评估方法,包括其成功率、对文本质量的影响、鲁棒性和不可伪造性;(3) 文本水印技术的潜在应用。本次调查旨在帮助研究人员深入了解文本水印技术,从而促进其进一步发展。

1 引言

2 文本水印的前言

3 当前文本的水印

4 水印用于LLM

5 文本水印的评估指标

### 扩散模型中的水印技术实现 扩散模型是一种基于概率分布建模的技术,在图像生成领域取得了显著成果。然而,随着这些模型的应用日益广泛,保护知识产权的需求也变得尤为重要。为此,研究者提出了多种针对扩散模型的水印嵌入方案。 一种常见的方法是在训练阶段通过修改损失函数来嵌入水印[^1]。具体而言,可以在目标函数中加入额外项以优化特定模式或特征向量作为隐秘标记。这种方法的优点在于不会明显影响模型性能的同时实现了版权标识的功能。 另一种方式则是在推理过程中动态添加个性化标签[^2]。例如当利用预训练好的扩散网络生成新图片时,可以调整某些超参数或者输入条件从而使得输出结果携带预定信息而不破坏视觉质量。 此外还有直接操作权重矩阵本身来进行永久性标注的做法[^3]。此策略涉及对神经元连接强度做细微改动以便于后期验证所有权归属情况而无需改变原有架构设计太多细节部分即可完成整个流程设置工作。 下面给出一段简单的伪代码用于演示如何在Python环境下构建基本框架: ```python import torch from diffusers import StableDiffusionPipeline def apply_watermark(model, watermark_data): """Apply a watermark by modifying the model's parameters.""" with torch.no_grad(): for param in model.parameters(): param.add_(watermark_data * 0.01) pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") # Example of embedding some random noise as watermark data. torch.manual_seed(42) watermark_tensor = torch.randn_like(next(pipeline.text_encoder.parameters())) apply_watermark(pipeline.unet, watermark_tensor) image = pipeline(prompt="A digital art piece").images[0] image.save("./output_with_watermark.png") ``` 上述脚本展示了怎样加载稳定扩散管道并对其内部组件施加自定义扰动达到隐藏签名效果的目的。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值