LoRA Learns Less and Forgets Less

LoRA是一种低秩自适应微调方法,用于大型语言模型,以节省内存。尽管在某些任务上性能不如同步微调,但LoRA展示出较强的正则化效果,减少遗忘并保持模型的泛化能力。研究表明,LoRA在编程和数学领域的特定数据集上表现逊色,但有助于保持生成的多样性。此外,LoRA的超参数敏感性和正则化特性对于优化微调过程至关重要。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《LoRA Learns Less and Forgets Less》的翻译。

摘要

低秩自适应(LoRA)是一种广泛应用于大型语言模型的参数高效微调方法。LoRA通过仅将低秩扰动训练到选定的权重矩阵来节省内存。在这项工作中,我们比较了LoRA和完全微调在编程和数学两个目标领域的性能。我们同时考虑指令微调(≈100K提示响应对)和连续预训练(≈10B非结构化token)数据机制。我们的研究结果表明,在大多数情况下,LoRA的性能明显不如完全微调。尽管如此,LoRA表现出了一种理想的正则化形式:它可以更好地保持基本模型在目标域外任务上的性能。我们表明,与权重衰减和丢弃等常见技术相比,LoRA提供了更强的正则化;它也有助于保持更多元化的生成。我们表明,全微调学习的扰动的秩比典型的LoRA配置大10-100X,这可能解释了一些报道的差距。最后,我们提出了使用LoRA进行微调的最佳实践。

1 引言

2 背景

3 实验设置

4 结果

5 相关工作

6 讨论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值