本文是LLM系列文章,针对《LoRA Learns Less and Forgets Less》的翻译。
摘要
低秩自适应(LoRA)是一种广泛应用于大型语言模型的参数高效微调方法。LoRA通过仅将低秩扰动训练到选定的权重矩阵来节省内存。在这项工作中,我们比较了LoRA和完全微调在编程和数学两个目标领域的性能。我们同时考虑指令微调(≈100K提示响应对)和连续预训练(≈10B非结构化token)数据机制。我们的研究结果表明,在大多数情况下,LoRA的性能明显不如完全微调。尽管如此,LoRA表现出了一种理想的正则化形式:它可以更好地保持基本模型在目标域外任务上的性能。我们表明,与权重衰减和丢弃等常见技术相比,LoRA提供了更强的正则化;它也有助于保持更多元化的生成。我们表明,全微调学习的扰动的秩比典型的LoRA配置大10-100X,这可能解释了一些报道的差距。最后,我们提出了使用LoRA进行微调的最佳实践。