Proxy-RLHF: Decoupling Generation and Alignment in Large Language Model with Proxy

Proxy-RLHF通过分离LLM的生成和对齐任务,以降低计算成本,实现与人类价值观的高效对齐。使用代理模型和强化学习,该方法在少量训练参数下即可达到与RLHF相当的对准效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Proxy-RLHF: Decoupling Generation and Alignment in Large Language Model with Proxy》的翻译。

代理RLHF:带代理的大型语言模型中的解耦生成和对齐

摘要

从人类反馈中强化学习(RLHF)是确保大型语言模型(LLM)与人类价值观一致的主流方法。然而,现有的RLHF方法需要高计算成本,一个主要原因是RLHF同时将生成和对齐任务分配给LLM。在本文中,我们介绍了Proxy RLHF,它将LLM的生成和对齐过程解耦,以低得多的计算成本实现与人类价值观的对齐。我们从为对齐过程设计的一种新的马尔可夫决策过程(MDP)开始,并使用强化学习(RL)来训练一个简化的代理模型,该模型在不改变LLM本身的情况下监督LLM的token生成。实验表明,我们的方法仅与其他方法的1%的训练参数实现了可比的对准水平。

1 引言

2 代理-RLHF

3 实验

4 相关工作

5 结论

在本文中,我们介绍了代理模型,该模型将LLM中的生成和对齐过程解耦,使用额外的轻量级代理模型来指导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值