Large Language Models in Fire Engineering An Examination of Technical Questions

本文考察了ChatGPT和Bard在处理消防工程问题时的表现,ChatGPT展现出相对优势。尽管无法替代工程师,但聊天机器人有望成为消防工程实践中的辅助工具,提供即时信息访问。然而,由于可能存在偏见和错误信息,使用时需谨慎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models in Fire Engineering: An Examination of Technical Questions Against Domain Knowledge》的翻译。

消防工程中的大型语言模型:针对领域知识的技术问题检验

摘要

本通信通过评估两个最近的聊天机器人(OpenAI的ChatGPT和谷歌的Bard)在处理消防安全相关查询时的反应,在消防工程的背景下比较了这两个聊天机器人的初步发现。创建并检查了各种各样的消防工程问题和场景,包括结构防火设计、防火策略、疏散、建筑规范合规性和灭火系统(其中一些类似于消防考试中常见的问题和场景)。结果揭示了聊天机器人性能的一些关键差异,其中ChatGPT表现出相对优越的性能。然后,这篇通讯强调了聊天机器人技术通过提供对关键信息的即时访问来彻底改变消防工程实践的潜力,同时概述了需要进一步改进和研究的领域。显然,当它成熟时,这项技术可能会成为我们工程师实践和教育的基础。

引言

方法

结论

本文介绍了OpenAI ChatGPT和Google Bard等聊天机器人在未来消防工程和疏散问题中被工程师用作辅助工具的潜力。虽然这种技术无法取代工程师,但它可以用于确认信息、协助计算等。这样,聊天机器人在该领域的地位可能与谷歌、谷歌学者、维基百科或其他类似的在线平

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值