Rich Semantic Knowledge Enhanced Large Language Models for Few-shot Chinese Spell Checking

本文探讨了使用RS-LLM方法,结合大型语言模型处理小样本汉语拼写检查(CSC)任务,通过引入汉语丰富语义信息,提升了基于BERT模型的效果,并在多个数据集上验证了优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Rich Semantic Knowledge Enhanced Large Language Models for Few-shot Chinese Spell Checking》的翻译。

丰富语义知识增强的小样本汉语拼写检查大型语言模型

摘要

汉语拼写检查(CSC)是一项应用广泛的技术,在语音转文本(STT)和光学字符识别(OCR)中发挥着至关重要的作用。大多数现有的CSC方法都依赖于BERT架构,实现了优异的性能。然而,受基础模型规模的限制,基于BERT的方法在小样本场景中效果不佳,在实际应用中显示出一定的局限性。在本文中,我们探索使用一种名为RS-LLM(基于丰富语义的LLM)的无文本学习方法来引入大型语言模型(LLM)作为基础模型。此外,我们还研究了在我们的框架中引入各种汉语丰富语义信息的影响。我们发现,通过引入少量特定的汉语丰富语义结构,LLM在小样本CSC任务中比基于BERT的模型取得了更好的性能。此外,我们在多个数据集上进行了实验,实验结果验证了我们提出的框架的优越性。

1 引言

2 相关工作

3 前言

4 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值