A Multi-evidence, Position-aware, and Scalable Benchmark for Evaluating Long-Context LLMs

65 篇文章 2 订阅 ¥99.90 ¥299.90
28 篇文章 1 订阅
本文提出Counting Stars基准,用于多证据、位置感知和可扩展的长上下文大型语言模型(LLM)评估。实验显示Gemini 1.5 Pro表现最佳,但所有模型在更长上下文和复杂任务中有改进空间。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Counting-Stars (★):A Multi-evidence, Position-aware, and Scalable Benchmark for Evaluating Long-Context Large Language Models》的翻译。

Counting Stars:一个用于评估长上下文大型语言模型的多证据、位置感知和可扩展的基准

摘要

虽然最近的研究工作集中在开发具有强大长上下文能力的大型语言模型(LLM)上,但由于缺乏长上下文基准,人们对长上下文LLM的性能知之甚少。为了解决这一差距,我们提出了一种用于评估长上下文LLM的多证据、位置感知和可扩展的基准,名为Counting Stars,它通过使用两个任务来评估长上下文LLC:多证据获取和多证据推理。基于Counting Stars测试,我们进行实验来评估长上下文LLM(即GPT-4 Turbo、Gemini 1.5 Pro、Claude3 Opus、GLM-4和Moonshot-v1)。实验结果表明,Gemini 1.5 Pro实现了最佳的整体效果,而GPT-4 Turbo的性能在各种任务中是最稳定的。此外,我们对这些LLM的分析表明,随着输入上下文的长度和任务的复杂性的增加,LLM有改进的潜力。代码和数据已发布。

1 引言

2 Counting Stars

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值