本文是LLM系列文章,针对《Crimson: Empowering Strategic Reasoning in Cybersecurity through Large Language Models》的翻译。
摘要
我们介绍了Crimson,这是一个在网络安全领域增强大型语言模型(LLM)战略推理能力的系统。通过将CVE与MITRE ATT&CK技术相关联,Crimson推进了威胁预测和战略防御工作。我们的方法包括定义和评估网络安全战略任务,同时实施全面的人在环数据合成工作流程,以开发CVE到ATT&CK映射(CVEM)数据集。我们通过一种新颖的检索感知训练(RAT)过程及其精细迭代RAT-R,进一步增强了LLM的推理能力。
我们的研究结果表明,使用我们的技术微调的LLM,拥有70亿个参数,接近GPT-4的性能水平,显示出明显更低的幻觉和错误率,并在战略推理任务中超过了其他模型。此外,嵌入模型的特定领域微调显著提高了网络安全环境中的性能,突显了我们方法的有效性。通过利用Crimson将原始漏洞数据转换为结构化和可操作的见解,我们加强了主动的网络安全防御。