本文是LLM系列文章,针对《AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting》的翻译。
摘要
随着多模态大型语言模型(MLLM)的出现和广泛部署,确保其安全性的必要性变得越来越明显。然而,随着附加模式的集成,MLLMs暴露在新的漏洞中,使其容易受到基于结构化的越狱攻击,其中语义内容(例如“有害文本”)被注入图像中以误导MLLMs。在这项工作中,我们的目标是防范这种威胁。具体而言,我们提出了自适应屏蔽提示(AdaShield),它在输入前准备防御提示,以保护MLLMs免受基于结构的越狱攻击,而无需微调MLLMs或训练额外的模块(例如,后期内容检测器)。最初,我们提供了一个手动设计的静态防御提示,它一步一步地彻底检查图像和指令内容,并指定对恶意查询的响应方法。此外,我们还介绍了一个自适应自动细化框架,该框架由目标MLLM和基于LLM的防御提示生成器(Defender)组成。这些组件协作和迭代地进行通信,以生成防御提示。在流行的基于结构的越狱攻击和良性数据集上进行的大量实验表明,我们的方法可以持续提