Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems

在这里插入图片描述

主要内容

本文提出了REC-R1框架,通过强化学习(RL)将大型语言模型(LLM)与推荐系统相结合,解决传统推荐系统缺乏开放域知识和用户意图理解的问题。REC-R1直接利用推荐系统的反馈信号(如NDCG、Recall)优化LLM的生成策略,无需依赖监督微调(SFT)或外部标注数据。实验表明,REC-R1在商品搜索和序列推荐任务中均显著优于基于提示或SFT的方法,同时保留了LLM的通用能力。

创新点
  1. 闭环优化框架:首次将LLM与推荐系统通过强化学习闭环连接,使LLM直接学习最大化推荐性能的生成策略。
  2. 避免监督微调局限性:无需依赖如GPT-4o生成的合成数据,消除数据蒸馏的高成本,且突破SFT性能受限于数据生成模型的天花板。
  3. 任务灵活性与模型无关性:适用于多种推荐架构(如BM25、BLAIR),支持不同生成任务(查询改写、用户画像生成等),无需修改推荐系统内部结
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值