Poisoning Web-Scale Training Datasets is Practical

本文是LLM系列文章,针对《Poisoning Web-Scale Training Datasets is Practical》的翻译。

摘要

深度学习模型通常在从互联网抓取的分布式网络规模数据集上进行训练。在本文中,我们介绍了两种新的数据集中毒攻击,它们故意将恶意示例引入模型的性能。我们的攻击立即变得切实可行,今天可能会毒害10个流行的数据集。我们的第一个攻击是分裂视图中毒,它利用互联网内容的可变性来确保数据集注释器对数据集的初始视图与后续客户端下载的视图不同。通过利用特定的无效信任假设,我们展示了如何以60美元的价格毒害0.01%的LAION-400M或COYO-700M数据集。我们的第二次攻击是前端中毒,针对的是定期快照众包内容的网络规模数据集,如维基百科,攻击者只需要一个有时间限制的窗口来注入恶意示例。鉴于这两种攻击,我们通知了每个受影响数据集的维护人员,并推荐了几种低开销的防御措施。

1 引言

2 背景和相关工作

3 威胁模型和攻击场景

4 拆分视图数据中毒

</

<think>好的,我现在需要帮助用户解决从torchvision导入datasets和transforms时报错的问题,报错位置在main_fed_cifar_cnn.py的第9行。首先,我需要根据用户提供的引用信息和常见解决方案来思考可能的原因和解决办法。 用户提到了三个引用,其中引用[2]提到了安装cairo库时的问题,以及解决依赖项的经验。这可能暗示环境配置或依赖库的问题。但torchvision的问题通常和PyTorch版本或安装完整性有关。 首先,常见的torchvision导入错误可能有以下几个原因: 1. **PyTorch和torchvision版本不兼容**:用户可能安装了不匹配的版本,导致无法正确导入模块。 2. **未正确安装torchvision**:可能只安装了PyTorch而没有安装torchvision,或者安装过程中出现错误。 3. **环境路径问题**:Python环境可能没有正确识别安装的库,尤其是在使用虚拟环境或conda环境时。 4. **系统依赖项缺失**:某些情况下,torchvision需要系统级的库支持,比如图像处理库。 接下来,我需要根据这些可能的原因逐一分析解决方法,并结合用户提供的引用信息。引用[2]中提到用户曾遇到安装cairocffi和editdistance的问题,并通过conda安装cairo解决了问题。这可能意味着用户使用的是conda环境,因此推荐使用conda来安装或更新torchvision可能更有效。 步骤分解: 1. **检查PyTorch和torchvision版本兼容性**:用户需要确认两者版本是否匹配。可以查看官方文档的版本对应表,例如PyTorch 1.12需要对应的torchvision版本。 2. **重新安装或更新torchvision**:使用pip或conda命令进行安装,确保安装过程中没有错误。conda有时能更好地处理系统依赖,比如引用[2]中的cairo问题。 3. **验证安装环境**:确保运行代码的环境是安装库的环境,特别是使用虚拟环境时,激活正确的环境。 4. **安装系统依赖项**:例如,在Linux上可能需要安装libjpeg或zlib等库,可以通过系统包管理器安装。 5. **检查CUDA和cuDNN版本**:如果使用GPU,需要确保PyTorch版本与CUDA驱动兼容。 此外,用户的问题出现在main_fed_cifar_cnn.py中,可能涉及联邦学习的代码。引用[3]提到联邦平均的实现,可能与代码结构无关,但需确保代码中没有其他导入错误或语法问题。 最后,需要建议用户尝试以上步骤,并提供具体的命令示例,如使用conda安装或pip安装指定版本。同时,提醒用户注意环境激活和依赖项安装,如引用[2]中提到的通过conda解决cairo问题的经验。</think>### 逐步解决方案 #### 1. 检查版本兼容性 PyTorch和torchvision版本必须严格匹配。以下是官方推荐的版本对应关系示例: - PyTorch 1.12.0 → torchvision 0.13.0 - PyTorch 2.0.1 → torchvision 0.15.2 **操作步骤**: ```bash # 查看当前安装版本 python -c "import torch; print(torch.__version__)" python -c "import torchvision; print(torchvision.__version__)" ``` #### 2. 重新安装匹配版本 使用conda或pip安装指定版本的torchvision(推荐优先使用conda,因其能自动处理系统依赖): ```bash # conda方式(需指定与PyTorch匹配的版本) conda install torchvision==0.13.0 -c pytorch # 假设PyTorch版本为1.12.0 # pip方式 pip install torchvision==0.13.0 --no-cache-dir ``` #### 3. 验证环境激活状态 确保代码运行在已安装库的环境中: ```bash # 检查当前Python环境路径 which python # Linux/Mac where python # Windows ``` #### 4. 安装系统级依赖(Linux/Windows) - **Linux**: ```bash sudo apt-get install libjpeg-dev zlib1g-dev libopenblas-dev ``` - **Windows**:需通过conda安装预编译的库: ```bash conda install -c conda-forge libjpeg-turbo openblas ``` #### 5. 清理并重装(针对安装残留问题) ```bash pip uninstall torch torchvision -y pip cache purge pip install torch torchvision --index-url https://download.pytorch.org/whl/cu117 # 示例CUDA 11.7版本 ``` --- ### 相关问题 1. **如何检查PyTorch与CUDA的兼容性?** - 运行 `python -c "import torch; print(torch.cuda.is_available())"` 验证CUDA是否可用[^2]。 2. **conda和pip混用导致环境混乱怎么办?** - 建议使用 `conda clean --all` 清理缓存后,创建新环境重新安装。 3. **联邦学习代码中导入torchvision失败会影响哪些功能?** - 数据加载(如CIFAR-10)和图像预处理(`transforms`模块)会直接失效[^1][^3]。 [^1]: 引用[1]提到代码封装了数据相关功能,依赖`torchvision.datasets`加载标准数据集。 : 引用[2]强调环境配置问题,如系统路径和依赖库安装。 [^3]: 引用[3]指出联邦平均的实现需要数据预处理模块支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值