Memory-Efficient LLM Training with Online Subspace Descent

本文是LLM系列文章,针对《Memory-Efficient LLM Training with Online Subspace Descent》的翻译。

摘要

最近,各种内存高效的LLM训练算法得到了广泛的应用。这些方法利用梯度的低秩结构,使用奇异值分解(SVD)得到的投影矩阵将优化器状态投影到子空间中。然而,这些算法的收敛性在很大程度上取决于其投影矩阵的更新规则。在这项工作中,我们为投影矩阵的任意更新规则提供了第一个收敛保证。这个保证通常适用于可以用哈密顿下降分析的优化器,包括最常见的优化器,如LION、Adam。受我们理论理解的启发,我们提出了在线子空间下降,这是一个新的无SVD子空间下降优化器家族。在线子空间下降不是用特征向量更新投影矩阵,而是用在线PCA更新投影矩阵。在线子空间下降是灵活的,只会给训练带来最小的开销。我们发现,对于在C4数据集上预训练60M至7B参数的LLaMA模型的任务,在线子空间下降在不同设置下比最先进的低秩训练方法具有更低的困惑度和更好的下游任务性能,并缩小了与全秩基线的差距。

1 引言

2 优化背景

3 通过在线子空间下降实现内存高效优化器

4 哈密顿下降与子空间下降:李雅普诺夫分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值