Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Informatio

本文是LLM系列文章,针对《Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction》的翻译。

自适应强化学习规划:利用大型语言模型提取复杂信息

摘要

对大型语言模型 (LLM) 的现有研究表明,它们可以通过多步骤规划来解决信息提取任务。但是,它们在复杂句子和任务上的提取行为不稳定,出现了误报和缺失元素等问题。我们观察到,分解复杂的提取任务并逐步提取它们可以有效地提高 LLM 的性能,并且实体的提取顺序会显着影响 LLM 的最终结果。本文提出了一种基于 LLM 的信息提取的两阶段多步骤方法,并采用 RL 框架执行多步骤规划。我们将顺序提取视为马尔可夫决策过程,构建基于 LLM 的提取环境,设计决策模块以自适应地为不同句子的顺序实体提取提供最优顺序,并利用 DDQN 算法训练决策模型。我们还设计了适合 LLM 提取结果的奖励和评估指标。我们在多个公共数据集上进行了广泛的实验,以证明我们的方法在提高 LLM 的信息提取能力方面的有效性。

1 引言

2 相关工作

3 方法

4 实验

5 结论

在本文中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值