本文是LLM系列文章,针对《ChemEval: A Comprehensive Multi-Level Chemical Evalution for
Large Language Models》的翻译。
摘要
人们对LLM在化学中的作用越来越感兴趣,这导致人们越来越关注针对化学领域量身定制的LLM基准的开发,以评估LLM在不同类型和复杂性的化学任务中的性能。然而,该领域的现有基准未能充分满足化学研究专业人员的具体要求。为此,我们提出了ChemEval,它对LLM在各种化学领域任务中的能力进行了全面评估。具体而言,ChemEval确定了化学中的4个关键渐进水平,评估了42个不同化学任务中LLM的12个维度,这些任务由开源数据和化学专家精心制作的数据提供信息,确保这些任务具有实用价值,能够有效地评估LLM的能力。在实验中,我们在零样本和小样本学习情境下评估了ChemEval上的12个主流LLM,其中包括精心选择的演示示例和精心设计的提示。结果表明,虽然GPT-4和Claude-3.5等一般LLM在文献理解和指令跟踪方面表现出色,但在需要高级化学知识的任务方面却存在不足。相反,专业LLM表现出更强的化学能力,尽管文学理解能力降低。这表明,LLM在处理化学领域的复杂任务时具有巨大的增强潜力。我们相信,我们的工作将有助于探索它们推动化学进步的潜力。我们的基准和分析将在