Explainable cognitive decline detection in free dialogues with a Machine Learning approach

本文是LLM系列文章,针对《Explainable cognitive decline detection in free dialogues with a Machine Learning approach based on pre-trained Large Language Models》的翻译。

使用基于预训练大型语言模型的机器学习方法,在自由对话中进行可解释的认知衰退检测

摘要

认知和神经系统障碍非常常见,但只有一小部分受影响的人得到诊断和治疗,部分原因是频繁筛查的成本高昂。通过有效且高效的智能系统检测疾病前期阶段并分析神经系统疾病的进展,有利于及时诊断和早期干预。我们建议使用大型语言模型从自由对话中提取特征来检测认知能力下降。这些功能包括与内容无关的高级推理功能(例如理解力、意识下降、注意力分散和记忆问题)。我们的解决方案包括(i)预处理,(ii)通过自然语言处理技术和提示工程进行特征工程,(iii)特征分析和选择以优化性能,以及(iv)由自动可解释性支持的分类。我们还探索如何利用模型中的最佳特征来提高 Chatgpt 的直接认知障碍预测能力。获得的评估指标认可了将特征提取与 Chatgpt 和专门的机器学习模型相结合的混合方法的有效性,以检测与老年人的自由形式对话对话中的认知衰退。最终,我们的工作可能有助于开发一种廉价、无创且快速的方法来检测和解释认知能力下降。

1 引言

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值