Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues

本文是LLM系列文章,针对《Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues》的翻译。

摘要

近年来,大型语言模型(LLMs)在完成复杂任务的能力方面变得越来越强大。LLM经常被采用的一项任务是评分,即从某个量表中为受试者分配一个数值。在这篇论文中,我们努力了解LLM是如何评分的,特别是在同理心评分的背景下。我们开发了一个新颖而全面的框架,用于研究LLM在衡量和评分对话中反应同理心方面的有效性,以及可以采用哪些方法来加深我们对LLM评分的理解。我们的策略是用明确和可解释的特征来近似最先进和微调的LLM的表现。我们使用对话的各种特征来训练分类器,包括嵌入、动机访谈治疗完整性(MITI)代码、LLM提出的一组明确的移情子因素,以及MITI代码和明确子因素的组合。我们的结果表明,当只使用嵌入时,有可能实现接近通用LLM的性能,当使用MITI码和LLM评分的显式子因子时,训练好的分类器可以与微调LLM的表现紧密匹配。我们采用特征选择方法来推导同理心评分过程中最关键的特征。我们的工作为理解LLM同理心评分提供了新的视角,并帮助LLM社区探索LLM评分在社会科学研究中的潜力。

1 引言

2 相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值