本文是LLM系列文章,针对《Chinese SafetyQA: A Safety Short-form Factuality Benchmark for Large Language Models》的翻译。
摘要
随着大型语言模型(LLMs)的快速发展,出现了重大的安全问题。从根本上说,大型语言模型的安全性与它们对安全知识的理解的准确性、全面性和清晰度密切相关,特别是在法律、政策和伦理等领域。这种真实性能力对于确定这些模型是否可以在特定地区安全、合规地部署和应用至关重要。为了应对这些挑战并更好地评估LLM回答简短问题的真实性能力,我们引入了中国安全QA基准。中国安全QA具有几个属性(即中国、多样、高质量、静态、易于评估、安全相关、无害)。基于中国安全质量保证,我们对现有LLM的真实性能力进行了全面评估,并分析了这些能力与LLM能力的关系,例如RAG能力和对攻击的鲁棒性。
1 引言
2 中文安全问答
3 实验验证
4 相关工作
5 结论
本文中,我们提出了中文安全质量保证,这是中文安全领域的第一个简明事实性基准。该基准涵盖了特定于中文环境的各种安全领域知识(如法律、政策和道德&#