本文是LLM系列文章,针对《The Differences Between Direct Alignment Algorithms are a Blur》的翻译。
摘要
直接对齐算法(DAAs)通过用直接策略优化取代人类反馈强化学习(RLHF)中的强化学习(RL)和奖励建模(RM)来简化语言模型对齐。DAA可以根据其排名损失(成对与逐点)、这些损失中使用的奖励(例如,政策和参考政策的似然比或比值比)或是否需要监督微调(SFT)阶段(两阶段与一阶段)进行分类。我们首先证明了单阶段方法不如两阶段方法。为了解决这个问题,我们引入了一个显式的SFT阶段,并在单级ORPO和ASFT中引入了控制偏好优化强度的β参数。这些修改使它们在Llama Eval 2中的性能提高了+3.46(ORPO)和+8.27(ASFT),与DPO等两阶段方法相匹配。进一步的分析表明,关键因素是该方法是使用成对目标还是逐点目标,而不是特定的隐含奖励或损失函数。这些结果强调了仔细评估的重要性,以避免过早宣称对齐算法的性能增益或整体优势。