本文是LLM系列文章,针对《MOBA: MIXTURE OF BLOCK ATTENTION FOR LONG-CONTEXT LLMS》的翻译。
摘要
扩展有效上下文长度对于向通用人工智能(AGI)推进大型语言模型(LLM)至关重要。然而,传统注意力机制固有的计算复杂性的二次增加带来了令人望而却步的开销。现有的方法要么强加有强烈偏见的结构,如特定于任务的水槽或窗口注意力,要么从根本上将注意力机制修改为线性近似,其在复杂推理任务中的表现仍未得到充分探索。
在这项工作中,我们提出了一种遵循“少结构”原则的解决方案,允许模型自主确定参加的地点,而不是引入预定义的偏差。我们介绍了块注意力混合(MoBA),这是一种将专家混合(MoE)原理应用于注意力机制的创新方法。这种新颖的架构在长上下文任务上表现出卓越的性能,同时提供了一个关键优势:能够在完全和稀疏注意力之间无缝过渡,在不损害性能的情况下提高效率。MoBA已经被部署来支持Kimi的长上下文请求,并在LLM的高效注意力计算方面取得了重大进展。我们的代码在https://github.com/MoonshotAI/moba上可用。