Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models

主要内容

  1. 研究背景与目的:医疗记录的整理和分析耗费医护人员大量时间,自然语言处理(NLP)技术中的命名实体识别(NER)可将非结构化患者信息转换为结构化记录,助力医疗工作。临床大语言模型(cLLMs)在医疗领域应用广泛,但在识别患者详细病史实体(MHEs)方面研究有限。本研究旨在比较微调后的cLLMs识别与患者主诉(CC)、现病史(HPI)和既往、家族、社会史(PFSH)相关MHEs的性能,并通过错误分析探究影响模型准确性的文本特征。
  2. 研究方法
    • 数据来源与标注:使用Medical Transcription Sample Reports and Examples(MTSamples)中的61份门诊相关临床笔记,标注了1449个MHEs,涵盖多种笔记类型。标注工作由本科生初标,经多位作者审核。
    • 模型选择与微调:以零样本设置的GPT-4o为基线,微调7种cLLMs。采用两种微调方式,一种是基本微调,另一种是融入预识别基本医疗实体(BMEs)信息的微调。
    • 模型评估
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值