Sparse Attention Remapping with Clustering for Efficient LLM Decoding on PIM

在这里插入图片描述

1. 核心问题
  • 内存带宽瓶颈:传统GPU架构在处理长上下文LLM的注意力计算时,由于内存访问频繁且计算与带宽不匹配,导致性能受限。
  • PIM架构的局限性:现有PIM设计主要针对密集注意力优化,难以应对动态、不规则的KV缓存稀疏访问模式,导致工作负载不平衡,降低吞吐量和资源利用率。
  • 稀疏注意力的挑战
    • Token级稀疏性:细粒度访问与PIM的行级内存粒度不匹配,导致大量无效数据读取。
    • 页级稀疏性:基于位置的分页策略虽对齐硬件,但包含大量无关Token,影响模型精度。
2. STARC方案设计
  • 语义聚类与内存重映射
    • 基于余弦相似度对KV对进行K-means聚类,将语义相似的Token物理存储在连续内存区域,对齐PIM的存储Bank结构。
    • 解码时通过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值