文章主要内容
本文聚焦于大规模语言模型(LLMs)的可扩展多阶段影响函数研究,旨在解决预训练数据对微调后模型预测的归因问题。核心内容包括:
- 多阶段影响函数框架:提出一种基于“预训练-微调”范式的影响函数,将微调模型的预测归因于预训练数据,通过引入参数空间 proximity constraint(邻近约束)解决输出层不匹配问题。
- EK-FAC参数化近似:利用特征值校正的克罗内克分解(EK-FAC)对Hessian矩阵进行高效近似,显著降低计算复杂度,使影响函数适用于数十亿参数的LLMs。
- 候选样本选择策略:基于语义相似性的无监督KNN方法筛选候选训练样本,避免遍历全量数据,提升计算效率。
- 实验验证:在dolly-v2-3b等真实LLMs上验证了方法的有效性,结果表明EK-FAC在扩展性和准确性上优于传统方法,且MLP参数对影响估计贡献更大。
文章创新点
- 多阶段影响函数的扩展:首次将影响函数从单阶段训练扩展到“预训练-微调”多阶段场景,支持全参数微调范式,解决了传统方法无法追溯预