Multimodal Integrated Knowledge Transfer to Large Language Models through Preference Optimization

文章主要内容

本文提出了一种名为MINT(Multimodal Integrated kNowledge Transfer)的框架,旨在通过偏好优化将多模态生物医学数据中的专业知识迁移到单模态大语言模型(LLMs)中,以解决高质量多模态生物医学数据稀缺的问题。MINT利用上游多模态机器学习(MML)模型生成偏好学习数据集,通过Odds Ratio Preference Optimization(ORPO)等技术对齐下游LLMs,使其在仅使用文本或图像输入时能执行预测任务,同时保留从多模态数据中学习到的知识。

核心应用与实验结果
  1. 罕见遗传病预测(文本任务)

    • 使用GestaltMML多模态模型(基于面部图像和临床笔记训练)生成偏好数据集,对齐轻量级文本LLM(Llama 3.2-3B-Instruct)。
    • 结果显示,MINT模型在仅使用文本输入时,性能优于监督微调(SFT)、检索增强生成(RAG)、直接偏好优化(DPO)等方法,甚至超过更大的基础模型(如Llama 3.1-405B-Instruct)。
    • 在零样本场景&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值