DisTime: Distribution-based Time Representation for Video Large Language Models

在这里插入图片描述

文章主要内容和创新点总结

主要内容
  1. 研究背景
    • 视频大语言模型(Video-LLMs)在时间敏感任务(如时刻检索、密集视频字幕、接地视频问答)中面临离散时间表示时间感知数据集有限的挑战。
    • 现有方法存在三大问题:
      • 文本-数字混合表示(如GroundingGPT)导致分类混淆;
      • 专用时间标记(如Momentor)受长尾分布和时间不连续性影响;
      • 重型时间模块(如InternVideo2.5)增加计算成本且依赖视觉信息重输入。
  2. DisTime框架
    • 核心设计:引入可学习时间标记<TIME_STAMP>,通过**基于分布的时间解码器(Distribution-b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值