机器学习——统计学习方法概述

学习机器学习的一些入门概念,以下内容出自《统计学习方法》这本书第一章的内容。

1 统计学习

统计学习(statistical learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statistical machine learning)。

1.1统计学习的主要特点

(1)统计学习以计算机及网络为平台,是建立在计算机及网络之上的;
(2)统计学习以数据为研究对象,是数据驱动的学科;
(3)统计学习的目的是对数据进行预测与分析;
(4)统计学习以方法为中心,统计学习方法构建模型并应用模型进行预测与分析;
(5)统计学习是概率论、统计学、信息论、计算理论、最优化理论及计算机科学等多个领域的交叉学科,并且在发展中逐步形成独自的理论体系与方法论。

1.2统计学习的对象

统计学习的对象是数据(data)。它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。作为统计学习的对象,数据是多样的,包括存在于计算机及网络上的各种数字、文字、图像、视频、音频数据以及它们的组合。
在统计学习过程中,以变量或变量组表示数据。数据分为由连续变量和离散变量表示的类型。本书以讨论离散变量的方法为主。

1.3统计学习的目的

统计学习用于对数据进行预测与分析,特别是对未知新数据进行预测与分析。对数据的预测可以使计算机更加智能化,或者说使计算机的某些性能得到提高;对数据的分析可以让人们获取新的知识,给人们带来新的发现。

对数据的预测与分析是通过构建概率统计模型实现的。统计学习总的目标就是考虑学习什么样的模型和如何学习模型,以使模型能对数据进行准确的预测与分析,同时也要考虑尽可能地提高学习效率。

1.4统计学习的方法

统计学习的方法是基于数据构建统计模型从而对数据进行预测与分析。统计学习由监督学习(supervised learning)、非监督学习(unsupervised learning)、半监督学习(semi-supervised learning)和强化学习(reinforcement learning)等组成。

本书主要讨论监督学习,这种情况下统计学习的方法可以概括如下:从给定的、有限的、用于学习的训练数据(training data)集合出发,假设数据是独立同分布产生的;并且假设要学习的模型属于某个函数的集合,称为假设空间(hypothesis space);应用某个评价准则(evaluation criterion),从假设空间中选取一个最优的模型,使它对已知训练数据及未知测试数据(test data)在给定的评价准则下有最优的预测;最优模型的选取由算法实现。 这样,统计学习方法包括模型的假设空间、模型选择的准则以及模型学习的算法,称其为统计学习方法的三要素,简称为 模型(model)、策略(strategy)和算法(algorithm)

实现 统计学习方法的步骤 如下:
(1)得到一个有限的训练数据集合;

(2)确定包含所有可能的模型的假设空间,即学习模型的集合;

(3)确定模型选择的准则,即学习的策略;

(4)实现求解最优模型的算法,即学习的算法;

(5)通过学习方法选择最优模型;

(6)利用学习的最优模型对新数据进行预测或分析。

本书以介绍统计学习方法为主,特别是监督学习方法,主要包括用于分类、标注与回归问题的方法。这些方法在自然语言处理、信息检索、文本数据挖掘等领域中有着极其广泛的应用。

2 监督学习

监督学习(supervised learning)的任务是学习一个模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测(注意,这里的输入、输出是指某个系统的输入与输出,与学习的输入与输出不同)。计算机的基本操作就是给定一个输入产生一个输出,所以监督学习是极其重要的统计学习分支,也是统计学习中内容最丰富、应用最广泛的部分。

2.1基本概念

1.输入空间、特征空间与输出空间

在监督学习中,将输入与输出所有可能取值的集合分别称为输入空间(input space)与输出空间(output space)。输入与输出空间可以是有限元素的集合,也可以是整个欧氏空间。输入空间与输出空间可以是同一个空间,也可以是不同的空间;但通常输出空间远远小于输入空间。

每个具体的输入是一个实例(instance),通常由特征向量(feature vector)表示。这时,所有特征向量存在的空间称为特征空间(feature space)。特征空间的每一维对应于一个特征。有时假设输入空间与特征空间为相同的空间,对它们不予区分;有时假设输入空间与特征空间为不同的空间,将实例从输入空间映射到特征空间。模型实际上都是定义在特征空间上的。

在监督学习过程中,将输入与输出看作是定义在输入(特征)空间与输出空间上的随机变量的取值。输入、输出变量用大写字母表示,习惯上输入变量写作X,输出变量写作Y。输入、输出变量所取的值用小写字母表示,输入变量的取值写作x,输出变量的取值写作y。变量可以是标量或向量,都用相同类型字母表示。除特别声明外,本书中向量均为列向量,输入实例x的特征向量记作
在这里插入图片描述
x (i) 表示x的第i个特征。注意,x (i) 与x i 不同,本书通常用x i 表示多个输入变量中的第i个,
在这里插入图片描述
监督学习从训练数据(training data)集合中学习模型,对测试数据(test data)进行预测。训练数据由输入(或特征向量)与输出对组成,训练集通常表示为
在这里插入图片描述
测试数据也由相应的输入与输出对组成。输入与输出对又称为样本(sample)或样本点。

输入变量X和输出变量Y有不同的类型,可以是连续的,也可以是离散的。人们根据输入、输出变量的不同类型,对预测任务给予不同的名称:输入变量与输出变量均为连续变量的预测问题称为回归问题;输出变量为有限个离散变量的预测问题称为分类问题;输入变量与输出变量均为变量序列的预测问题称为标注问题。

2.联合概率分布

监督学习假设输入与输出的随机变量X和Y遵循联合概率分布P(X,Y)。P(X,Y)表示分布函数,或分布密度函数。注意,在学习过程中,假定这一联合概率分布存在,但对学习系统来说,联合概率分布的具体定义是未知的。训练数据与测试数据被看作是依联合概率分布P(X,Y)独立同分布产生的。统计学习假设数据存在一定的统计规律,X和Y具有联合概率分布的假设就是监督学习关于数据的基本假设。

3.假设空间

监督学习的目的在于学习一个由输入到输出的映射,这一映射由模型来表示。换句话说,学习的目的就在于找到最好的这样的模型。模型属于由输入空间到输出空间的映射的集合,这个集合就是假设空间(hypothesis space)。假设空间的确定意味着学习范围的确定。

监督学习的模型可以是概率模型或非概率模型,由条件概率分布P(Y|X)或决策函数(decision function)Y=f(X)表示,随具体学习方法而定。对具体的输入进行相应的输出预测时,写作P(y|x)或Y=f(x)。

2.2问题的形式化

监督学习分为学习和预测两个过程,由学习系统与预测系统完成,可用图1.1来描述。
在这里插入图片描述

2.3统计学习三要素

统计学习方法都是由模型、策略和算法构成的,即统计学习方法由三要素构成,可以简单地表示为

方法=模型+策略+算法

2.3.1模型

统计学习首要考虑的问题是学习什么样的模型。在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。模型的假设空间(hypothesis space)包含所有可能的条件概率分布或决策函数。例如,假设决策函数是输入变量的线性函数,那么模型的假设空间就是所有这些线性函数构成的函数集合。假设空间中的模型一般有无穷多个。

2.3.2策略

有了模型的假设空间,统计学习接着需要考虑的是按照什么样的准则学习或选择最优的模型。统计学习的目标在于从假设空间中选取最优模型。

1、损失函数和风险函数
监督学习问题是在假设空间中选取模型f作为决策函数,对于给定的输入X,由f(X)给出相应的输出Y,这个输出的预测值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(loss function)或代价函数(cost function)来度量预测错误的程度。损失函数是f(X)和Y的非负实值函数,记作L(Y,f(X))。
统计学习常用的损失函数有以下几种:

(1)0-1损失函数(0-1 loss function)
在这里插入图片描述
(2)平方损失函数(quadratic loss function)
在这里插入图片描述
(3)绝对损失函数(absolute loss function)
在这里插入图片描述
(4)对数损失函数(logarithmic loss function)或对数似然损失函数(loglikelihood loss function)在这里插入图片描述
损失函数值越小,模型就越好。由于模型的输入、输出(X,Y)是随机变量,遵循联合分布P(X,Y),所以损失函数的期望是在这里插入图片描述
这是理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失,称为风险函数(risk function)或期望损失(expected loss)。

给定一个训练数据集
在这里插入图片描述
模型f(X)关于训练数据集的平均损失称为经验风险(empirical risk)或经验损失(empirical loss),记作R emp :
在这里插入图片描述

期望风险R exp (f)是模型关于联合分布的期望损失,经验风险R emp (f)是模型关于训练样本集的平均损失。根据大数定律,当样本容量N趋于无穷时,经验风险R emp (f)趋于期望风险R exp (f)。 所以一个很自然的想法是用经验风险估计期望风险。但是,由于现实中训练样本数目有限,甚至很小,所以用经验风险估计期望风险常常并不理想,要对经验风险进行一定的矫正。这就关系到监督学习的两个基本策略:经验风险最小化和结构风险最小化。

2、经验风险最小化和结构风险最小化
在假设空间、损失函数以及训练数据集确定的情况下,经验风险函数式(1.10)就可以确定。经验风险最小化(empirical risk minimization,ERM)的策略认为,经验风险最小的模型是最优的模型。 根据这一策略,按照经验风险最小化求最优模型就是求解最优化问题:
在这里插入图片描述
其中,F 是假设空间。当样本容量足够大时,经验风险最小化能保证有很好的学习效果,在现实中被广泛采用。

结构风险最小化(structural risk minimization,SRM)是为了防止过拟合而提出来的策略。结构风险最小化等价于正则化(regularization)。结构风险在经验风险上加上表示模型复杂度的正则化项(regularizer)或罚项(penalty term)。 在假设空间、损失函数以及训练数据集确定的情况下,结构风险的定义是
在这里插入图片描述
其中J(f)为模型的复杂度,是定义在假设空间 在这里插入图片描述上的泛函。模型f越复杂,复杂度J(f)就越大;反之,模型f越简单,复杂度J(f)就越小。也就是说,复杂度表示了对复杂模型的惩罚。在这里插入图片描述 ≥0是系数,用以权衡经验风险和模型复杂度。结构风险小需要经验风险与模型复杂度同时小。结构风险小的模型往往对训练数据以及未知的测试数据都有较好的预测。

结构风险最小化的策略认为结构风险最小的模型是最优的模型。所以求最优模型,就是求解最优化问题:
在这里插入图片描述
这样,监督学习问题就变成了经验风险或结构风险函数的最优化问题(1.11)和(1.13)。这时经验或结构风险函数是最优化的目标函数。

2.3.3算法

算法是指学习模型的具体计算方法。统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后需要考虑用什么样的计算方法求解最优模型。

这时,统计学习问题归结为最优化问题,统计学习的算法成为求解最优化问题的算法。如果最优化问题有显式的解析解,这个最优化问题就比较简单。但通常解析解不存在,这就需要用数值计算的方法求解。如何保证找到全局最优解,并使求解的过程非常高效,就成为一个重要问题。统计学习可以利用已有的最优化算法,有时也需要开发独自的最优化算法。

统计学习方法之间的不同,主要来自其模型、策略、算法的不同。确定了模型、策略、算法,统计学习的方法也就确定了。这也就是将其称为统计学习三要素的原因。

2.4模型评估与模型选择

2.4.1训练误差与测试误差

统计学习的目的是使学到的模型不仅对已知数据而且对未知数据都能有很好的预测能力。不同的学习方法会给出不同的模型。当损失函数给定时,基于损失函数的模型的训练误差(training error)和模型的测试误差(test error)就自然成为学习方法评估的标准。注意,统计学习方法具体采用的损失函数未必是评估时使用的损失函数。当然,让两者一致是比较理想的。
假设学习到的模型是Y= (X),训练误差是模型Y= (X)关于训练数据集的平均损失:
在这里插入图片描述
其中N是训练样本容量。

测试误差是模型Y= (X)关于测试数据集的平均损失:
在这里插入图片描述
其中 是测试样本容量。
训练误差的大小, 对判断给定的问题是不是一个容易学习的问题是有意义的,但本质上不重要。测试误差反映了学习方法对未知的测试数据集的预测能力,是学习中的重要概念。 显然,给定两种学习方法,测试误差小的方法具有更好的预测能力,是更有效的方法。通常将学习方法对未知数据的预测能力称为泛化能力(generalization ability)

2.4.2过拟合与模型选择

当假设空间含有不同复杂度(例如,不同的参数个数)的模型时,就要面临模型选择(model selection)的问题。我们希望选择或学习一个合适的模型。如果在假设空间中存在“真”模型,那么所选择的模型应该逼近真模型。具体地,所选择的模型要与真模型的参数个数相同,所选择的模型的参数向量与真模型的参数向量相近。

如果一味追求提高对训练数据的预测能力,所选模型的复杂度则往往会比真模型更高。这种现象称为过拟合(over-fitting)。过拟合是指学习时选择的模型所包含的参数过多,以致于出现这一模型对已知数据预测得很好,但对未知数据预测得很差的现象。可以说模型选择旨在避免过拟合并提高模型的预测能力。

在多项式函数拟合中可以看到,随着多项式次数(模型复杂度)的增加,训练误差会减小,直至趋向于0,但是测试误差却不如此,它会随着多项式次数(模型复杂度)的增加先减小而后增大。而最终的目的是使测试误差达到最小。 这样,在多项式函数拟合中,就要选择合适的多项式次数,以达到这一目的。这一结论对一般的模型选择也是成立的。

图1.3描述了训练误差和测试误差与模型的复杂度之间的关系。当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合,进行最优的模型选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。下面介绍两种常用的模型选择方法:正则化与交叉验证。
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值