卡特兰数:
c[n]=Σ(0≤k<n)c[k]c[n-k-1],边界条件为c[0]=1;
其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合;
根据组合公式我们可以化简得c[n]=2n(2n-1)…(n+2)/n!;
两点距离公式:
A(a,b)->B(c,d):abs(a-c)²+abs(b-d)²
组合数:
卡特兰数:
c[n]=Σ(0≤k<n)c[k]c[n-k-1],边界条件为c[0]=1;
其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合;
根据组合公式我们可以化简得c[n]=2n(2n-1)…(n+2)/n!;
两点距离公式:
A(a,b)->B(c,d):abs(a-c)²+abs(b-d)²
组合数: