目录
在大语言模型(LLM)应用日益普及的今天,掌握有效的提示词(Prompt)工程技巧已成为提升AI协作效率的关键。作为国产大模型的代表,DeepSeek在中文理解与任务执行方面表现出色,但能否充分发挥其潜力,取决于用户对提示词结构的把控。本文系统梳理六大经典提示公式,结合具体应用场景解析实战案例,助您快速掌握与AI高效对话的秘诀。
公式1:背景+需求+约束条件
公式说明:通过明确任务背景、核心需求和限制条件,帮助AI准确理解任务边界,特别适用于复杂场景下的精准需求传达。
案例1:学术论文润色
"我最近完成了一篇关于量子计算在金融风险预测中应用的英文论文(背景),需要将语言润色到适合《Nature Communications》期刊的学术水准(需求)。请保持专业术语准确性,避免改变原意,同时将整体篇幅控制在8000字以内(约束)。"
案例2:市场活动策划
"公司计划在深圳举办面向科技创业者的线下沙龙(背景),需要设计包含主题演讲、圆桌讨论和自由交流三个环节的3小时活动方案(需求)。预算不超过5万元,场地需容纳200人,并体现绿色环保理念(约束)。"
案例3:代码优化咨询
"现有Python数据预处理脚本存在内存占用过高问题(背景),需要在不降低处理速度的前提下优化内存使用(需求)。要求保持Pandas和NumPy兼容性,且单次处理数据集规模为10GB以上(约束)。"
公式2:身份+任务+要求+例子
公式说明:通过角色定位和示例引导,使AI输出更符合专业规范,特别适合需要特定领域知识的场景。
案例1:产品需求文档撰写
"你作为资深产品经理(身份),需要撰写智能手环睡眠监测功能的PRD文档(任务)。要求包含用户故事、功能流程图、技术指标三部分(要求)。参考示例:[健康监测模块]用户佩戴手环入睡后,系统自动记录深睡/浅睡/REM周期..."
案例2:教学方案设计
"假设你是重点中学语文教研组长(身份),需要设计《红楼梦》整本书阅读的单元教学方案(任务)。要求包含导读课、精读课、研讨课三种课型,每课时配备学习任务单(要求)。示范案例:精读课选取'宝黛共读西厢'片段,设置人物关系图谱绘制任务..."
案例3:法律文书起草
"以律师事务所合伙人的身份(身份),起草一份跨境电商商标侵权律师函(任务)。需符合《商标法》第57条规范,包含侵权事实陈述、法律依据、整改要求三部分(要求)。模板参考:[侵权方信息]经查,贵司在亚马逊平台销售的...已构成对[注册商标]的侵害"
公式3:目标→用途→效果→担忧
公式说明:通过层层递进的思考路径,帮助AI预判潜在问题并给出解决方案。
案例1:营销文案创作
"我要撰写新能源汽车的社交媒体文案(目标)→用于吸引25-35岁科技爱好者的关注(用途)→希望突出智能驾驶和续航优势(效果)→但担心技术参数过多导致阅读疲劳(担忧)"
案例2:数据分析报告
"我需要整理季度销售数据(目标)→用于管理层战略决策会议(用途)→希望直观展示区域增长差异(效果)→但担心图表选择不当影响信息传达(担忧)"
案例3:个人简历优化
"计划更新求职简历(目标)→申请互联网产品经理岗位(用途)→需要突出项目管理经验(效果)→但担心经历描述过于笼统(担忧)"
公式4:需求+担忧+反向验证
公式说明:通过逆向思维设置验证标准,确保输出结果的可靠性。
案例1:投资建议咨询
"需要推荐适合保守型投资者的基金组合(需求),担心风险等级评估不准确(担忧)。请先列出近三年最大回撤超过5%的基金并排除(反向验证)"
案例2:旅游攻略制定
"计划7月北海道自驾游(需求),担心路线规划不合理导致驾驶疲劳(担忧)。要求标注单日驾驶超过3小时的路段,并提供备选方案(反向验证)"
案例3:护肤品推荐
"寻找适合敏感肌的防晒霜(需求),担心成分引发过敏(担忧)。请先排除含乙醇、香精成分的产品,并提供EWG认证信息(反向验证)"
公式5:问题+追问预期+调整方向
公式说明:通过动态迭代优化输出结果,特别适合需要多轮优化的场景。
案例1:代码调试
"当前Python脚本报错'IndexError: list index out of range'(问题)→请解释具体出错位置及可能原因(预期)→如果涉及数据预处理环节,建议增加空值检测机制(调整)"
案例2:论文降重
"查重报告显示第三章重复率28%(问题)→需要保持专业性的改写建议(预期)→若涉及方法论描述,可采用同义替换+句式重组策略(调整)"
案例3:商业计划书
"投资人反馈盈利模式不够清晰(问题)→需要补充用户生命周期价值分析(预期)→建议在客户细分部分增加ARPU值预测模型(调整)"
公式6:目标+条件+验证方式
公式说明:通过设定可量化的验证标准,确保输出结果满足实际需求。
案例1:广告语生成
"创作3条智能手表广告语(目标)→要求包含"健康""科技"关键词,不超过15字(条件)→请按记忆度、情感共鸣、行动号召力三个维度评分(验证)"
案例2:会议纪要整理
"将1小时产品评审会录音转为结构化纪要(目标)→需区分讨论要点、待决议项、行动计划(条件)→关键决策点需标注时间戳并与录音原文核对(验证)"
案例3:竞品分析
"制作新能源汽车竞品对比表(目标)→包含续航、智能配置、售价三维度(条件)→数据需标注来源并检查官网信息一致性(验证)"
DeepSeek实战
测试1:广告语
开启了深度思考:
DeepSeek回复:
测试2:护肤品推荐
只开启了联网搜索:
DeepSeek回复:
综合应用策略
- 公式组合使用:复杂任务可叠加多个公式,如先使用公式1设定框架,再用公式5进行迭代优化
- 渐进式优化:从基础公式开始,逐步增加约束条件和验证标准
- 领域适配调整:技术类任务侧重公式1/5/6,创意类任务善用公式2/3/4
- 反馈机制建立:要求AI解释思考过程,如"请说明选择这个方案的三点理由"
通过系统掌握这六大公式,用户可显著提升与DeepSeek的协作效率。实践表明,结构化提示可使输出质量提升40%以上,任务完成时间缩短30%。建议建立个人提示词库,持续积累不同场景下的优质模板,最终形成人机协同的智能工作流。