欧拉公式两种表达式的差异

欧拉公式被誉为 “最美数学公式”,它把 e (自然对数的底)、π(圆周率)、i (虚数单位)、整数 0 和 1 联系在一起。

1c4d615989a51de954a4914bb32d97f9.png

笔者第一次见到这个式子是在科普读物上。当时最为困惑的一点就是, π i πi πi 是纯虚数, e e e π i πi πi 次方怎么就变成了一个实数? e 、 π e、π eπ 两个看似无关的数学常数为何神奇地通过虚数单位 i i i 联系在一起?

事实上,上面提到的公式只是原始欧拉公式的特殊情况,其原始形式如下图所示。表面上看,它似乎提供了计算 “纯虚数次方” 的方法。要正确理解欧拉公式,就有必要先理解 “虚数次方” 的概念 (“虚数” 默认指纯虚数,下同)。

9d60f4e34765fdb0ac02b66f0c58c9ca.png

↑↑ 欧拉公式的原始形式

一个数的 “多少次方” 的概念最初只对正整数幂次才有意义。a 的 n 次方 (n 为正整数) 就是 n 个 a 相乘: a × a × a × … × a a×a×a×…×a a×a×a××a在不引入新定义的情况下,若 n 不是正整数,a 的 n 次方就无意义。例如,我们尚不明确 “-3 个 a 相乘” 或是 “1.23 个 a 相乘” 的含义。

在数学中,我们之所以能计算非整数次方,是因为人们对定义做了拓展,这带有人为规定的性质。当然,拓展遵守一个原则:尽量使拓展前的数学性质在拓展后仍适用, 类似于软件的 “前向兼容性”。此外,作为新定义,拓展必须建立在已有的定义上,否则就会有模糊性

作为例子,我们来看看 “a 的 n 次方”(简记为 a n a^{n} an) 中的 n 是如何拓展到负整数的:n 为负整数时,记 n 的绝对值为 | n |,则 a n a^n an 等于 a ∣ n ∣ a^{| n |} an 再取倒数。这一拓展满足 “前向兼容性”,例如 ( a n ) × ( a m ) = a n + m (a^n)×(a^m)=a^{n+m} (an)×(am)=an+m 这个性质在拓展后仍适用;拓展中的绝对值、倒数运算都是已定义的,没有模糊性。这样看,这个拓展是非常自然的。最终,我们把 n 推广到了任意实数 x。

那么,我们能否把实数 x 拓展到虚数情况?为了契合主题,这里只考虑 ex。要以 “较为自然” 的方式把 x 拓展到虚数,可以考察 ex 的幂级数形式,如下:

9d76aae444f0de4fd20a9212c5614980.png

似乎把上式的 x 简单代换为 i x ix ix,拓展工作就完成了。但要注意的是, e x e^{x} ex 原本是定义在 x x x 为实数的情况下,因此上式只对实数情况适用, x x x 简单替换为 i x ix ix 得到的 “等式” 必须理解为仿照 e x e^{x} ex 幂级数形式人为规定的定义式

5ed02979231185c11d3ee67d2b178c27.png

在上图中,我们特别在等号上加 “ d e f def def” 以强调它是定义式。我们可以把等号右边每一项计算出来,然后把实数部分和虚数部分各自合并,如下图。

7e693b5340ed672f5ebbe193768d500e.png

↑↑ e i x e^{ix} eix 的正式定义

我们把上式作为 “ e e e 的虚数次方” 的正式定义。它的右边只涉及乘除运算、正整数次方以及无穷级数求和,因此建立在已有定义上。定义式中括号部分刚好就是余弦、正弦函数的级数形式,从而自然地导出了欧拉公式!利用这点,我们可以证明仍有

e i x × e i y = e i x + i y e^{ix}×e^{iy}=e^{ix+iy} eix×eiy=eix+iy

因此这个定义也满足一定 “兼容性”。

bcb7d18c70922100192531c80254e098.png

根据这些讨论,欧拉公式是 e i x e^{ix} eix 的定义式的简单推论。不难看出, e e e 的 “虚数次方” 与 e e e 的实数次方在定义上有很大差别。

此外,“虚数次方” 与实数次方并不是完全兼容,比方说,实数情况下有 a ≠ b a≠b a=b 就一定有 e a ≠ e b e^{a} ≠ e^{b} ea=eb,这个性质在虚数情况下不适用,一个简单例子是 e π i = e 3 π i e^{πi}=e^{3πi} eπi=e3πi

因此,“虚数次方” 并不是好的说法, e i x e^{ix} eix 只是一个形式记号。在一定意义上, e i x e^{ix} eix c o s x + i s i n x cosx+isinx cosx+isinx 的简便记法


注:1、根据内容修改了一下标题,原标题如下。2、对原文中公式 latex 化。

via:

图片

这个公式一共包含 5 个常数与 2 个符号,全都是构成数学的最基本要素,以极其简洁的形式结合在一起。

0 和 1 是最简单的两个实数,也是构造代数的基础,有了它们就可以得到其他任何数字。 任何数与 0 相加等于它本身,任何数与 1 相乘也等于它自身,因此它们也是抽象代数中群、环、域的基本元素。

圆周率 π π π,隐藏着世界上最完美的平面对称图形 —— 圆。 它代表着人类自古以来对数与形的探索,是几何与三角函数的基础。

自然常数 e e e 与微积分相伴而生。 它是微积分与概率论的化身,代表着与工业革命相适应的数学。

虚数单位 i i i,是 − 1 - 1 1 的平方根,有了它就有了虚数、平面向量与四元数,也因此构成了电子学与量子力学的理论基础。

+ + +” 是最基础的运算符号,减法是加法的逆运算,乘法是累计的加法,有了加法就能引申出其余的运算。

= = =” 是最基本的关系符号,它代表了世上最重要的关系 —— 平衡。

这就是最美公式的构成。

它诞生于群星璀璨的时代,与微积分的发展密不可分。

图片

牛顿和莱布尼茨发明了微积分,但当时的微积分还只是个孩童,真正拉扯它长大成人的,是四大数学家之一的欧拉。正因如此,欧拉也被称为 “分析的化身”。

雅各布・伯努利在研究复利问题时,首先提出了著名的极限,而后,欧拉将其推广,并将该常数命名为 e,也就是自然常数。

艾萨克·牛顿(Isaac Newton,1643年1月4日-1727年3月31日),爵士,英国物理学家、数学家、哲学家。

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德国哲学家、数学家,是历史上少见的通才,被誉为十七世纪的亚里士多德。

莱昂哈德·欧拉(Leonhard Euler,1707年4月15日—1783年9月18日),瑞士数学家、自然科学家。

雅各布·伯努利(Jakob Bernoulli‎,1654-1705年),伯努利家族代表人物之一,瑞士数学家。被公认的概率论的先驱之一。他是最早使用“积分”这个术语的人,也是较早使用极坐标系的数学家之一。还较早阐明随着试验次数的增加,频率稳定在概率附近。他还研究了悬链线,还确定了等时曲线的方程。概率论中的伯努利试验与大数定理也是他提出来的。

指数函数 e x e^{x } ex 成为了微积分中最重要的函数,没有之一,因为它是唯一一个(不考虑常数倍)导数和积分都是其自身的函数。

紧随其后的就是余弦函数 c o s x cosx cosx 和正弦函数 s i n x sinx sinx

泰勒公式的加持下,三个函数都有优美的级数展开形式:

图片

布鲁克·泰勒(Brook Taylor,1685年8月18日-1731年12月29日)英国数学家,他主要以泰勒公式和泰勒级数闻名。

将它们联系起来,就得到了欧拉公式:

图片

x x x 取特殊值 π π π 时,就化作了最美公式 —— 欧拉恒等式:

图片

它融合了数学上最重要的 5 个常数,以极其简洁的方式,连接了不同的数学分支。

同时,也包含了物理学中的圆周运动、简谐振动、机械波、电磁波和概率波等,对后世产生了深远影响。

图片

它仿佛一首完美而简洁的诗,道尽了数学之美。

难怪数学家们评价它为:“神创造的公式,我们只能看它却不能完全理解它”


注:对原文增注数学家生平简介。

via:

篇外:常见泰勒公式展开

  1. e x = ∑ n = 0 ∞ 1 n ! x n e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n ex=n=0n!1xn x ∈ ( − ∞ , + ∞ ) x \in (-\infty, +\infty) x(,+)

  2. sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \cdots sinx=n=0(2n+1)!(1)nx2n+1=x3!1x3+5!1x5+ x ∈ ( − ∞ , + ∞ ) x \in (-\infty, +\infty) x(,+)

  3. cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 + \cdots cosx=n=0(2n)!(1)nx2n=12!1x2+4!1x4+ x ∈ ( − ∞ , + ∞ ) x \in (-\infty, +\infty) x(,+)

  4. ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 + ⋯ \ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 + \cdots ln(1+x)=n=0n+1(1)nxn+1=x21x2+31x3+ x ∈ ( − 1 , 1 ] x \in (-1, 1] x(1,1]

  5. 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯ \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots 1x1=n=0xn=1+x+x2+x3+ x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1)

  6. 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯ \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots 1+x1=n=0(1)nxn=1x+x2x3+ x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1)

  7. ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n (1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n!} x^n (1+x)α=1+n=1n!α(α1)(αn+1)xn x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1)

  8. arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯ + x \arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 + \cdots + x arctanx=n=02n+1(1)nx2n+1=x31x3+51x5++x x ∈ [ − 1 , 1 ] x \in [-1, 1] x[1,1]

  9. arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + ⋯ \arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} = x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{5}{112} x^7 + \frac{35}{1152} x^9 + \cdots arcsinx=n=04n(n!)2(2n+1)(2n)!x2n+1=x+61x3+403x5+1125x7+115235x9+ x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1)

  10. tan ⁡ x = ∑ n = 1 ∞ B 2 n ( 2 n ) ! ( ( − 4 ) n ( 1 − 4 n ) ( 2 n − 1 ) ) x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + 1382 155925 x 11 + 21844 6081075 x 13 + 929569 638512875 x 15 + ⋯ \tan x = \sum_{n=1}^{\infty} \frac{B_{2n}}{(2n)!} \left(\frac{(-4)^n (1-4^n)}{(2n-1)} \right) x^{2n-1} = x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \frac{17}{315} x^7 + \frac{62}{2835} x^9 + \frac{1382}{155925} x^{11} + \frac{21844}{6081075} x^{13} + \frac{929569}{638512875} x^{15} + \cdots tanx=n=1(2n)!B2n((2n1)(4)n(14n))x2n1=x+31x3+152x5+31517x7+283562x9+1559251382x11+608107521844x13+638512875929569x15+ x ∈ ( − π 2 , π 2 ) x \in (-\frac{\pi}{2}, \frac{\pi}{2}) x(2π,2π)

B n B_n Bn​ 表示伯努利数。

泰勒级数不同领域的应用

泰勒级数展开在数学、物理学、工程学和计算机科学等领域有广泛的应用。

指数函数 e x e^x ex 可以用于计算复利、放射性衰变、自然生长和衰减过程。在物理学中,它描述量子力学中的波函数演化。

正弦函数 sin ⁡ x \sin x sinx 和余弦函数 cos ⁡ x \cos x cosx 都可以用于描述周期性现象,如声波、光波和电磁波。在工程学中,它们用于设计振荡器和滤波器。

自然对数 ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x) 可以用于计算连续复利。在物理学中,它描述某些类型的热力学过程。

几何级数 1 1 − x \frac{1}{1-x} 1x1 和反向几何级数 1 1 + x \frac{1}{1+x} 1+x1 都可以用于计算无限级数的和,如在数列求和和概率论中的应用。

幂函数 ( 1 + x ) α (1+x)^{\alpha} (1+x)α 可以用于计算复利和金融数学中的增长模型。在物理学中,它描述某些类型的物理过程,如气体的压强-体积关系。

反正切函数 arctan ⁡ x \arctan x arctanx 和反正弦函数 arcsin ⁡ x \arcsin x arcsinx 都可以用于计算三角函数的反函数,解决涉及角度的问题。在电子学中,反正切函数用于设计积分器和微分器电路。

正切函数 tan ⁡ x \tan x tanx 可以用于计算三角函数,描述角度和边长之间的关系。在物理学中,它描述周期性运动,如简谐振动。

泰勒级数展开形式使得它们在需要近似计算时非常有用,尤其是在数值分析和计算机科学中,可以简化复杂的数学表达式,进行数值计算和模拟。

  • 19
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值