平衡方案(统计使天平平衡的方案数)

本文介绍了如何运用动态规划(DP)解决一个背包问题变式:天平上平衡砝码的搭配方案数。给定天平一侧物体的重量M和N个砝码,目标是找到所有使得天平平衡的非负整数对(X1, X2, ..., Xn),并返回方案数模10^9的结果。示例输入输出、数据规模以及动态规划的转移方程和初始化状态均被详细阐述。" 114147869,10542066,YUV420SP到NV21转换与YUV存储格式解析,"['音视频编解码', '图像处理', 'YUV格式', 'Android开发', 'iOS开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平衡方案

Description

天平的一侧物体重量为M,该天平有N个砝码,求保持天平平衡,砝码搭配的方案数。

Input

第二行两个整数N,M

第二行N个整数,表示各个砝码的重量

Output

一个整数 ANS 表示所有非负整数对(X1,X2,。。。Xn)的个数,如果答案超过了9位数,你只需输出ANS mod 10^9的值即可。

Sample Input Copy

5 5
1 2 3 4 5

Sample Output Copy

3

HINT

数据规模

1<=N<=1000,0<=M<=1000

分析
显而易见,这是一道DP的题目,无非是背包问题的一种变式
统计使天平平衡的方案数也就是统计使背包装满的方案数
根据对DP问题的分析,我们往往从第n个问题开始
对于方案数,我们有 f[n][m] 表示放到第n个砝码使总重量为m时的方案数
当然,对于每一个砝码我们是有两种可能的——可以放,不可以放
这样,我们便要分开来分析了;
不可以放的话,当前的便是要继承之前的方案数,也就是——f[n][m] = f[n-1][m]
如果可以的话,当前的便是: f[n][m] = f[n-1][m] + f[n-1][m-a[n]] (a[n]表示第n个砝码的重量)
在分析完动态转移方程后,便是轮到对初始画的解决了
这里给出下表࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值