构建一棵二叉树,需要中序和先序后序中的一种进行搭配,中序和先序构建二叉树,中序和后序构建二叉树,而只有先序后序遍历是无法构建成功的。
中序和先序构建二叉树
先序遍历:根节点 左子树节点 右子树节点
特点:便于找到当前树的根节点。
中序遍历:左子树节点 根节点 右子树节点
特点:便于划分左右两棵子树
我们先用先序遍历找到当前树的根节点,再在中序遍历中划分出左右子树,将中序遍历中的左右子树送入递归,直到送入的中序遍历长度小于一,递归结束。
struct TreeNode* makeTree(int* pre, int* in, int* index, int left, int right)
{
if(left > right)
return NULL;
struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root -> val = pre[(*index)++];
int id = left;
while(in[id] != root -> val)
id++;
root -> left = makeTree(pre, in, index, left, id - 1);
root -> right = makeTree(pre, in, index, id + 1, right);
return root;
}
struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize) {
int* index = (int*)malloc(sizeof(int));
*index = 0;
return makeTree(preorder, inorder, index, 0, preorderSize - 1);
}
上述代码中left,right代表当前树的中序遍历的最左端最右端下标。
因为在先序遍历中取出当前根节点的下标这个操作是不能收到函数递归影响的,所以我用指针来修改index的值。
中序和后序构建二叉树
后序遍历:左子树节点 右子树节点 根节点
特点:便于找到当前树的根节点。
中序遍历:左子树节点 根节点 右子树节点
特点:便于划分左右两棵子树
与先序构造不同的是,后序构造的根节点下标index应该从尾向前移动,这样才能取出当前树的根节点,但由于后序遍历依次存放左子树节点,右子树节点,根节点,所以我们应该先进行右子树递归,在进行左子树递归。
struct TreeNode* build(int* in, int* post, int* index, int left, int right)
{
if(left > right)
return NULL;
struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root -> val = post[(*index)--];
int id = left;
while(in[id] != root -> val)
id++;
root -> right = build(in, post, index, id + 1, right);
root -> left = build(in, post, index, left, id - 1);
return root;
}
struct TreeNode* buildTree(int* inorder, int inorderSize, int* postorder, int postorderSize) {
int* index = (int*)malloc(sizeof(int));
*index = inorderSize - 1;
return build(inorder, postorder, index, 0, inorderSize - 1);
}