pytorch笔记18-23数据操作(维度变换4)

索引操作

  1. 索引操作
a = torch.IntTensor(4,3,28,28)
# 对第一张和第二张图片索引
a.index_select(0,torch.tensor([0,2]))
#第一个参数为哪一个维度 第二个参数要求为tensor类型的list
# ...代表任意维度
a[...].shape
# torch.Size([4, 3, 28, 28])
a[0,...].shape
# torch.Size([3, 28, 28]) 第一张图片

# select by mask
x = torch.randn(3,4)
# tensor([[-1.9093,  0.2825,  0.7315,  1.1656],
        [-0.4558,  1.3926, -0.9906,  0.4290],
        [ 1.8861,  0.8970,  0.4231,  0.8157]])
mask = x.ge(0.5)		# 标记元素大于0.5的位置为True,其他位置为0
# tensor([[False, False,  True,  True],
        [False,  True, False, False],
        [ True,  True, False,  True]])
torch.masked_select(x,mask)
# tensor([0.7315, 1.1656, 1.3926, 1.8861, 0.8970, 0.8157])
# select by flatten index,把数据打平然后索引
src = torch.tensor([[1,2,3],[4,5,6]])
torch.take(src,torch.tensor([0,2,4]))
# tensor([1, 3, 5])和index_select不同,它第一个参数是维度的选择

维度变换

  1. 维度变换

    view reshape

    a = torch.rand(4,1,28,28)
    a.shape
    # torch.Size([4, 1, 28, 28])
    a.view(4,28*28)
    a.view(4,28*28).shape
    # torch.Size([4, 784])
    # 可以实现维度的任意变化,注意数据的意义
    

    squeeze(压缩) /unsqueeze(展开)

    # unsqueeze,正数在索引左侧插入,负数在在索引右侧插 入一个维度
    a.shape
    # torch.Size([4, 1, 28, 28])
    a.unsqueeze(0).shape
    # torch.Size([1, 4, 1, 28, 28])
    a.unsqueeze(-1).shape
    # torch.Size([4, 1, 28, 28, 1])
    a = torch.tensor([1.2,2.3])
    a.unsqueeze(-1)
    # tensor([[1.2000],
            [2.3000]])	# 在每一个数据后加上一个维度
    a.unaqueeze(0)
    # tensor([[1.2000, 2.3000]])	# 在每一个数据前加上一个维度
    

    example

    # 在图片的channel通道加上一个偏置
    b = torch.rand(32)
    f = torch.rand(4,32,14,14)
    b = b.unsqueeze(1).unsqueeze(1).unsqueeze(0)
    b.shape
    # torch.Size([1, 32, 1, 1])
    

    squeeze维度删减

    # 不指定维度时,删除所有size为1的维度
    b.shape	# torch.Size([1, 32, 1, 1])
    b.squeeze()	# torch.Size([32])
    # 指定维度,删除对应索引,若维度!=1,不删除也不报错
    b.squeeze(0).shape
    # torch.Size([32, 1, 1])
    b.squeeze(1).shape
    # torch.Size([1, 32, 1, 1]) 没有删除
    

    维度扩展:expand不主动填充数据,推荐使用,参数就是变化后的维度;repeat主动复制数据,参数为复制的次数

    # expand
    b.shape 	
    # torch.Size([1, 32, 1, 1])
    b.expand(4,32,14,14).shape
    # torch.Size([4, 32, 14, 14])
    b.expand(-1,32,14,14).shape
    # torch.Size([1, 32, 14, 14]) 参数-1表示保持原维度不变,懒得写了
    
    # repeat
    b.shape 	
    # torch.Size([1, 32, 1, 1])
    b.repeat(4,32,1,1).shape
    # torch.Size([4, 1024, 1, 1])
    

数据转置

  1. 数据转置

    在使用view操作,会丢失数据的维度顺序关系,需要人为跟踪数据维度变化

    # a.shape	
    # torch.Size([4, 3, 32, 32]) [b,c,h,w]
    a1 = a.transpose(1,3).contiguous().view(4,3*32*32).view(4,3,32,32)
    # [b,c,w,h]
    a2 =  a.transpose(1,3).contiguous().view(4,3*32*32).view(4,32,32,3).transpose(1,3)
    # [b,c,h,w]
    torch.all(torch.eq(a,a2))	# tensor(True)
    torch.all(torch.eq(a,a1))	# tensor(False)
    

    permute/要把[b,c,h,w]变为[b,h,w,c]需要两次transpose操作,也可以直接使用permute实现任意次维度交换,其实是内部调用若干次transpose操作

    b = torch.rand(4,3,28,32)
    b.permute(0,2,3,1)
    # torch.Size([4, 28, 32, 3])
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值