Mike is the president of country What-The-Fatherland. There are n bears living in this country besides Mike. All of them are standing in a line and they are numbered from 1 to n from left to right. i-th bear is exactly ai feet high.
A group of bears is a non-empty contiguous segment of the line. The size of a group is the number of bears in that group. The strengthof a group is the minimum height of the bear in that group.
Mike is a curious to know for each x such that 1 ≤ x ≤ n the maximum strength among all groups of size x.
The first line of input contains integer n (1 ≤ n ≤ 2 × 105), the number of bears.
The second line contains n integers separated by space, a1, a2, ..., an (1 ≤ ai ≤ 109), heights of bears.
Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.
10 1 2 3 4 5 4 3 2 1 6
6 4 4 3 3 2 2 1 1 1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=2*100000+100;
struct node
{
int x;
int cur;
}a[maxn];
int ant[maxn];
int lef[maxn];
int righ[maxn];
bool cmp(node u,node v)
{
return u.x>v.x;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
{
scanf("%d",&a[i].x);
a[i].cur=i+1;
}
sort(a,a+n,cmp);
memset(lef,0,sizeof(lef));
memset(righ,0,sizeof(righ));
memset(ant,0,sizeof(ant));
for(int i=0;i<n;i++)
{
int cwt=1;
int v=a[i].cur;
if(v-1>=1)
{
lef[v]=lef[v-1]+1;
}
else
lef[v]=1;
if(v+1<=n)
{
righ[v]=righ[v+1]+1;
}
else
righ[v]=1;
cwt=righ[v]+lef[v]-1;
if(v-1>=1)//最左边的元素的右边连续序列长度值
righ[v-lef[v]+1]=max(righ[v-lef[v]+1],cwt);
if(v+1<=n)//最右边的左连续序列长度值
lef[v+righ[v]-1]=max(lef[v+righ[v]-1],cwt);
ant[cwt]=max(ant[cwt],a[i].x);
}
int cwt=0;
for(int i=n;i>0;i--)
{
cwt=max(cwt,ant[i]);
ant[i]=cwt;
}
for(int i=1;i<n;i++)
printf("%d ",ant[i]);
printf("%d\n",ant[n]);
}
return 0;
}