547B. Mike and Feet(codeforces Round #305)

B. Mike and Feet
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mike is the president of country What-The-Fatherland. There are n bears living in this country besides Mike. All of them are standing in a line and they are numbered from 1 to n from left to right. i-th bear is exactly ai feet high.

A group of bears is a non-empty contiguous segment of the line. The size of a group is the number of bears in that group. The strengthof a group is the minimum height of the bear in that group.

Mike is a curious to know for each x such that 1 ≤ x ≤ n the maximum strength among all groups of size x.

Input

The first line of input contains integer n (1 ≤ n ≤ 2 × 105), the number of bears.

The second line contains n integers separated by space, a1, a2, ..., an (1 ≤ ai ≤ 109), heights of bears.

Output

Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.

Sample test(s)
input
10
1 2 3 4 5 4 3 2 1 6
output
6 4 4 3 3 2 2 1 1 1 


题目大意:
  分别找出连续序列长度为1~n中的最小值的最大值。

题解:
   n<=2 × 105
                        于是复杂度为最大为nlog(n),可以考虑下排序,排序要记录原来的位置,然后从大到小依次放回
 
原来的位置,放回后查询下将多少数连在一起,暴力判断肯定超时,用两个数组标记一下,分别是以这个位置

左边连续序列的长度和右边的连续序列的长度,对一段连续序列来说,只有序列最左边的元素的右边序列长度

值和最右边的左序列长度值有用。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=2*100000+100;
struct node
{
    int x;
    int cur;
}a[maxn];
int ant[maxn];
int lef[maxn];
int righ[maxn];
bool cmp(node u,node v)
{
    return u.x>v.x;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i].x);
            a[i].cur=i+1;
        }
        sort(a,a+n,cmp);
        memset(lef,0,sizeof(lef));
        memset(righ,0,sizeof(righ));
        memset(ant,0,sizeof(ant));
        for(int i=0;i<n;i++)
        {
            int cwt=1;
            int v=a[i].cur;
            if(v-1>=1)
            {
              lef[v]=lef[v-1]+1;
            }
            else
            lef[v]=1;
            if(v+1<=n)
            {
               righ[v]=righ[v+1]+1;
            }
            else
            righ[v]=1;
            cwt=righ[v]+lef[v]-1;
            if(v-1>=1)//最左边的元素的右边连续序列长度值
            righ[v-lef[v]+1]=max(righ[v-lef[v]+1],cwt);
            if(v+1<=n)//最右边的左连续序列长度值
            lef[v+righ[v]-1]=max(lef[v+righ[v]-1],cwt);
            ant[cwt]=max(ant[cwt],a[i].x);
        }
        int cwt=0;
        for(int i=n;i>0;i--)
        {
            cwt=max(cwt,ant[i]);
            ant[i]=cwt;
        }
        for(int i=1;i<n;i++)
        printf("%d ",ant[i]);
        printf("%d\n",ant[n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值