题目http://www.51nod.com/onlineJudge/questionCode.html#problemId=1391¬iceId=20917
给定一个01串S,求出它的一个尽可能长的子串S[
i..j],满足存在一个位置i<=x <=j, S[i..x]中0比1多,而S[x + 1..j]中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Input示例
10
Output示例
0
解题思路:
挺有意思的一道题目,看题目容易让我们想到,2次预处理,1次从前往后找出到这个位置0的个数大于1的最大
长度,还有一次从前往后找出到这个位置1的个数大于0的个数。但是怎么找呢?这时就需要小技巧了,我们让0代
表-1,1代表1,则一段的和小于0,则0的个数大于1的,大于0则代表1的个数大于0的个数,于是就转化成求到这个位置
大于0或者小于0的最长长度。
到此为止还不能解决题目,我们以从前往后处理为例,当从起始位置到这里的和小于0时,很好处理,这一段长
度就是了,但是当和大于等于0时怎么办?假设到这里值为cur(cur>=0),看前面是否出现cur+1,出现cur+1,最早出
现cur+1的位置到当前的值就是满足0的个数大于1的个数的最长长度,为什么是cur+2,cur+3也满足要求,但从
这些值的开始的长度一定小于从cur+1开始的吗,一定的,因为cur+2,cur+3一定在cur+1的后面,于是题目就可以做
了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1000000+1000;
int h[maxn];
int a[maxn];
int b[maxn];
int c[maxn];
char s[maxn];
int main()
{
scanf("%s",s);
int n=strlen(s);
int cur=0;
for(int i=0;i<n;i++)
{
if(s[i]=='0')
a[i]=-1;
else
a[i]=1;
}
memset(h,-1,sizeof(h));
memset(b,0,sizeof(a));
for(int i=0;i<n;i++)
{
cur+=a[i];
if(cur<0)
b[i]=i+1;
else
{
if(h[cur+1]!=-1)
{
b[i]=i-h[cur+1];
}
else
{
h[cur]=i;
b[i]=0;
}
}
}
memset(h,-1,sizeof(h));
memset(c,0,sizeof(c));
cur=0;
for(int i=n-1;i>=0;i--)
{
cur+=a[i];
if(cur>0)
c[i]=n-i;
else
{
if(h[-(cur-1)]!=-1)
{
c[i]=h[-(cur-1)]-i;
}
else
{
c[i]=0;
h[-(cur)]=i;
}
}
}
int ans=0;
for(int i=0;i<n;i++)
{
if(b[i]>0&&c[i+1]>0)
ans=max(b[i]+c[i+1],ans);
}
cout<<ans<<endl;
return 0;
}