51nod 1391 01串(锻炼思维的好题)


   题目http://www.51nod.com/onlineJudge/questionCode.html#problemId=1391¬iceId=20917


题目来源:  Codility
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题


给定一个01串S,求出它的一个尽可能长的子串S[ i..j],满足存在一个位置i<=x <=j, S[i..x]中0比1多,而S[x + 1..j]中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Input示例
10
Output示例
0


   解题思路:

         挺有意思的一道题目,看题目容易让我们想到,2次预处理,1次从前往后找出到这个位置0的个数大于1的最大

长度,还有一次从前往后找出到这个位置1的个数大于0的个数。但是怎么找呢?这时就需要小技巧了,我们让0代

表-1,1代表1,则一段的和小于0,则0的个数大于1的,大于0则代表1的个数大于0的个数,于是就转化成求到这个位置

大于0或者小于0的最长长度。

       到此为止还不能解决题目,我们以从前往后处理为例,当从起始位置到这里的和小于0时,很好处理,这一段长

度就是了,但是当和大于等于0时怎么办?假设到这里值为cur(cur>=0),看前面是否出现cur+1,出现cur+1,最早出

现cur+1的位置到当前的值就是满足0的个数大于1的个数的最长长度,为什么是cur+2,cur+3也满足要求,但从

些值的开始的长度一定小于从cur+1开始的吗,一定的,因为cur+2,cur+3一定在cur+1的后面,于是题目就可以做

了。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1000000+1000;
int h[maxn];
int a[maxn];
int b[maxn];
int c[maxn];
char s[maxn];
int main()
{
    scanf("%s",s);
    int n=strlen(s);
    int cur=0;
    for(int i=0;i<n;i++)
    {
        if(s[i]=='0')
        a[i]=-1;
        else
        a[i]=1;
    }
    memset(h,-1,sizeof(h));
    memset(b,0,sizeof(a));
    for(int i=0;i<n;i++)
    {
        cur+=a[i];
        if(cur<0)
        b[i]=i+1;
        else
        {
            if(h[cur+1]!=-1)
            {
                b[i]=i-h[cur+1];
            }
            else
            {
                h[cur]=i;
                b[i]=0;
            }
        }
    }
    memset(h,-1,sizeof(h));
    memset(c,0,sizeof(c));
    cur=0;
    for(int i=n-1;i>=0;i--)
    {
        cur+=a[i];
        if(cur>0)
        c[i]=n-i;
        else
        {
            if(h[-(cur-1)]!=-1)
            {
                c[i]=h[-(cur-1)]-i;
            }
            else
            {
                c[i]=0;
                h[-(cur)]=i;
            }
        }
    }
    int ans=0;
    for(int i=0;i<n;i++)
    {
        if(b[i]>0&&c[i+1]>0)
        ans=max(b[i]+c[i+1],ans);
    }
    cout<<ans<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值