给定一个01串S,求出它的一个尽可能长的子串S[
i..j],满足存在一个位置i<=x <=j, S[i..x]中0比1多,而S[x + 1..j]中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Input示例
10
Output示例
0
能想到枚举x的位置,求以x为分割点的区间的最大长度,但是不知道应该如何处理出x向左延伸的最大长度和x+1向右延伸的最大长度
看了题解后才明白令串中的0代表数-1,1代表数1
①求l[i]时(下标从1开始),sum[i]表示区间[1,i]的和
若sum[i]<0:l[i]=i
若sum[i]>=0:如果在[1,i-1]内存在sum[j]=sum[i]+1且j最小,则l[i]=i-(j+1)+1-i-j【因为在区间[j+1,i]内必定有0的个数=1的个数+1】,否则l[i]=-1
②求r[i]时(下标从1开始),sum[i]表示(len+区间[1,i]的和)
若sum[i]>0:r[i]=(len-1)-(i)+1=len-i
若sum[i]<=0:如果在[i+1,len-1]内存在sum[j]=sum[i]-1且j最大,则r[i]=(j-1)-i+1=j-i【因为在区间[i+1,j-1]内必定有1的个数=0的个数+1】,否则r[i]=-1
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN=1000005;
int l[MAXN],r[MAXN],index[MAXN],sum,len,ans;//l[i]表示以i为终止的区间满足0个数>1个数的最长区间长度;r[i]表示以i为起始的区间满足1个数>0个数的最长区间长度;index[i]表示第一次前(后)缀和为i时的下标
char s[MAXN];
int main() {
while(1==scanf("%s",s+1)) {
memset(l,-1,sizeof(l));
memset(r,-1,sizeof(r));
memset(index,-1,sizeof(index));
sum=0;
len=1;
while(s[len]!='\0') {
sum+=s[len]=='0'?-1:1;
if(sum<0) {
l[len]=len;
}
else {
if(index[sum+1]!=-1) {
l[len]=len-index[sum+1];//以当前下标为终止的满足题意的最长区间为[ index[sum+1]+1 , len ]
}
if(index[sum]==-1) {//如果前缀和未出现过sum,则len为其最靠前的下标
index[sum]=len;
}
}
++len;
}
memset(index,-1,sizeof(index));
sum=len;
for(int i=len-1;i>0;--i) {
sum+=s[i]=='0'?-1:1;
if(sum>len) {
r[i]=len-i;
}
else {
if(index[sum-1]!=-1) {
r[i]=index[sum-1]-i;//以当前下标为起始的满足题意的最长区间为[ i , index[sum-1]-1 ]
}
if(index[sum]==-1) {//如果(后缀和+len)未出现过sum,则i为其最靠后下标
index[sum]=i;
}
}
}
ans=0;
for(int i=1;i<len;++i) {
if(l[i]!=-1&&r[i+1]!=-1) {//只有i为终止的区间和以i+1为起始的区间都存在时,才更新答案
ans=max(ans,l[i]+r[i+1]);
}
}
printf("%d\n",ans);
}
return 0;
}