给定一个01串S,求出它的一个尽可能长的子串S[i..j],满足存在一个位置i<=x <j, S[i..x]中0比1多,而S[x + 1..j]中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Input示例
10
Output示例
0
解:枚举一个值,计算他能向右和向左延伸的最大距离,这里从最简单的考虑,如果左区间存在一个位置他的值为当前值+1,则他到当前点的区间一定是合法的,记录这个
值,延伸到最左边,右区间同理
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <bitset>
using namespace std;
typedef long long LL;
const int N = 1000000+7;
char str[N];
int a[N], b[N], val[N], len, k;//a 0, b 1
int q[N];
int main()
{
scanf("%s",str+1);
len=strlen(str+1);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(q,-1,sizeof(q));
for(int i=1;i<=len;i++)
{
if(str[i]=='0') val[i]=-1;
else val[i]=1;
}
int cnt=0;
for(int i=1;i<=len;i++)
{
cnt+=val[i];
if(cnt<0) a[i]=i;
else
{
if(q[cnt+1]!=-1) a[i]=i-q[cnt+1];
else a[i]=0,q[cnt]=i;
}
}
memset(q,-1,sizeof(q));
cnt=0;
for(int i=len;i>=1;i--)
{
cnt+=val[i];
if(cnt>0) b[i]=len-i+1;
else
{
if(q[-(cnt-1)]!=-1) b[i]=q[-(cnt-1)]-i;
else b[i]=0,q[-cnt]=i;
}
}
int ans=0;
for(int i=1;i<len;i++)
{
if(a[i]>0&&b[i+1]>0)
{
ans=max(ans,a[i]+b[i+1]);
}
}
cout<<ans<<endl;
return 0;
}