给定数据集;
概率判别模型是直接去求,如下:
高斯判别分析是一种概率生成模型,这里我们需要最大化后验概率估计,对于二分类,高斯判别分析并不是直接去求和的值,而是去比较与的大小关系,而是对联合概率进行建模;由贝叶斯公式可知,
此处,与无关,所以正比于,其中,是posterior,是likehood,是piror。
GDA假设:
由于服从伯努利分布,所以,而 , 这里先不将高斯分布的概率密度函数展开写。
likehood:
给定数据集;
概率判别模型是直接去求,如下:
高斯判别分析是一种概率生成模型,这里我们需要最大化后验概率估计,对于二分类,高斯判别分析并不是直接去求和的值,而是去比较与的大小关系,而是对联合概率进行建模;由贝叶斯公式可知,
此处,与无关,所以正比于,其中,是posterior,是likehood,是piror。
GDA假设:
由于服从伯努利分布,所以,而 , 这里先不将高斯分布的概率密度函数展开写。
likehood: