【温故而知新】高斯判别分析(Gaussian Discriminant Analysis)

本文介绍了高斯判别分析(GDA),一种基于贝叶斯公式和高斯分布的概率生成模型。通过建模联合概率,GDA用于分类任务,尤其关注后验概率的比较。内容涵盖了GDA的基本假设、似然函数、最大后验估计以及参数求解过程,详细阐述了如何求解未知量,为理解和应用GDA提供了清晰的路径。
摘要由CSDN通过智能技术生成

给定数据集D=\left \{(x_i,y_i)_{i=1}^N,x_i \in \mathbb{R}^p, y_i \in \{0, 1\} \right \}

概率判别模型是直接去求P(y|x),如下:

                \hat{y}=\arg \max_{y\in\{ 0,1 \}}P(y|x)

高斯判别分析是一种概率生成模型,这里我们需要最大化后验概率估计,对于二分类,高斯判别分析并不是直接去求P(y=0|x)P(y=1|x)的值,而是去比较P(y=0|x)P(y=1|x)的大小关系,而是对联合概率进行建模;由贝叶斯公式可知,

               P(y|x)=\frac{P(x|y) \cdot P(y)}{P(x)} \propto P(x|y) \cdot P(y)=P(x,y)

此处,yP(x)无关,所以P(y|x)正比于P(x|y) \cdot P(y),其中,P(y|x)是posterior,P(x|y)是likehood,P(y)是piror。

GDA假设:

              y \sim Bernouni(\varnothing )

             x|y=1 \sim N(\mu_1, \sigma )

             x|y=0 \sim N(\mu_2, \sigma )

由于y服从伯努利分布,所以P(y)=\varnothing ^y(1 -\varnothing) ^{1-y},而 P(x|y)=P(x|y=1)P(x|y=0)=N(\mu_1, \sigma)^yN(\mu_2, \sigma)^{1-y},  这里先不将高斯分布的概率密度函数展开写。

likehood: L(\theta)=\log \prod_{i=1}^{N}P(x_i,y_i)

                        =\sum_{i=1}^{N} \log \left \{P(x_i|y_i)P(y_i) \right \}

                        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值