线性判别分析(Linear Discriminant Analysis, LDA)是一种经典的线性分类方法。
LDA的基本思想:给定训练数据集,设法将样本投影到一条直线上,使得同类样本的投影点尽可能的接近,不同类样本的投影点尽可能远离;在对新来样本进行分类时,首先将其投影到直线上,再根据投影点的位置来判断样本所属的类别。即:类内小,类间大("高内聚,松耦合")
给定数据集,在这里我们将记为类,记为类,则
, ,
, ,
样本点在直线上的投影:,此处令
训练样本的均值:
训练样本的方差: