【温故而知新】线性判别分析(Linear Discriminant Analysis)

线性判别分析(LDA)是一种用于分类的线性方法,旨在通过投影使得同类样本点接近,不同类样本点远离。LDA通过计算类内和类间方差来确定最佳投影方向,从而实现高内聚、低耦合的分类效果。在给定的数据集上,LDA通过训练样本的均值和方差来构建目标损失函数,并求解最优投影向量。
摘要由CSDN通过智能技术生成

线性判别分析(Linear Discriminant Analysis, LDA)是一种经典的线性分类方法。

LDA的基本思想:给定训练数据集,设法将样本投影到一条直线上,使得同类样本的投影点尽可能的接近,不同类样本的投影点尽可能远离;在对新来样本进行分类时,首先将其投影到直线上,再根据投影点的位置来判断样本所属的类别。即:类内小,类间大("高内聚,松耦合")

给定数据集D=(x_1,y_i)}_{i=1}^{N},x_i \in \mathbb{R}^p,y_i \in \{ +1, -1\},在这里我们将y=+1记为C_1类,y=-1记为C_2类,则

x_{c_1}=\{x_i |y_i=+1 \},    x_{c_2}=\{ x_i|y_i=-1 \},

 \left | x_{c1} \right | = N_1,    \left | x_{c2} \right | = N_2,    N_1+N_2 = N

样本点在直线WX上的投影:Z_i = W^Tx_i,此处令\left \| W\right \|_2^2=1

训练样本的均值:\bar{Z}=\frac{1}{N}\sum_{i=1}^{N}Z_i=\frac{1}{N}\sum_{i=1}^NW^Tx_i

训练样本的方差: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值